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Abstract—High-quality 4D reconstruction of human performance with complex interactions to various objects is essential in real-world

scenarios, which enables numerous immersive VR/AR applications. However, recent advances still fail to provide reliable performance

reconstruction, suffering from challenging interaction patterns and severe occlusions, especially for the monocular setting. To fill this

gap, in this paper, we propose RobustFusion, a robust volumetric performance reconstruction system for human-object interaction

scenarios using only a single RGBD sensor, which combines various data-driven visual and interaction cues to handle the complex

interaction patterns and severe occlusions. We propose a semantic-aware scene decoupling scheme to model the occlusions explicitly,

with a segmentation refinement and robust object tracking to prevent disentanglement uncertainty and maintain temporal consistency.

We further introduce a robust performance capture scheme with the aid of various data-driven cues, which not only enables re-

initialization ability, but also models the complex human-object interaction patterns in a data-driven manner. To this end, we introduce a

spatial relation prior to prevent implausible intersections, as well as data-driven interaction cues to maintain natural motions, especially

for those regions under severe human-object occlusions. We also adopt an adaptive fusion scheme for temporally coherent human-

object reconstruction with occlusion analysis and human parsing cue. Extensive experiments demonstrate the effectiveness of our

approach to achieve high-quality 4D human performance reconstruction under complex human-object interactions whilst still

maintaining the lightweight monocular setting.

Index Terms—4D reconstruction, human-object interaction, performance reconstruction, RGBD camera, robust

Ç

1 INTRODUCTION

THE rise of virtual reality and augmented reality (VR and
AR) to present information in an innovative and immer-

sive way has increased the demand for human-centric 4D

(3D spatial plus 1D temporal) content generation, with vari-
ous applications from entertainment to commerce, from
gaming to education, from military to art. Further, recon-
structing the 4D models of human activities under human-
object interactions both robustly and conveniently remains
unsolved, which suffers from challenging interaction pat-
terns and severe occlusions. It evolves as a cutting-edge yet
bottleneck technique and has recently attracted substantive
attention of both the computer vision and computer graphics
communities.

Early model-based methods [1], [2], [3], [4], [5] suffer
from pre-scanned templates or inefficient run-time perfor-
mance, which are unacceptable for daily interactive applica-
tion. Recent volumetric approaches have eliminated the
reliance on the templates and increased both the effective-
ness and efficiency with modern GPUs.

The high-end solutions [6], [7], [8], [9], [10] achieve realis-
tic human-object reconstruction using multi-view studio
setup which provides sufficient view observation to solve
the challenging interaction and occlusion ambiguity. How-
ever, their complex and expensive multi-view studio setting
leads to the high restriction of the daily applications. Differ-
ently, the monocular volumetric approaches adopt the hand-
iest commercial RGBD camera and temporal fusion pipeline.
Early general solutions [11], [12], [13], [14] handle general
dynamic scenes without disentangling human and objects,
suffering from careful and orchestrated motions. Recent sol-
utions [15], [16], [17] embed the human parametric models
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like SMPL [18] into the fusion pipeline to handle more com-
plex motions. Within this category, our conference version
RobustFusion [19] (denoted as RobustFusion(Conf.)) further
enables more robust monocular capture using various data-
driven visual cues such as motion [20], [21], geometry [22],
[23] or semantic segmentation [24]. It gets rid of the self-scan-
ning constraint for monocular capture with re-initialization
ability, where the captured performer does not need to turn
around carefully to obtain complete reconstruction. How-
ever, these monocular approaches with human priors
neglect to model the mutual influence between human and
object, leading to limited reconstruction under the challeng-
ing interaction scenarios. On the other hand, various
researchers [25], [26], [27], [28], [29], [30], [31], [32] recon-
struct the 4D relations between humans and the objects or
the environments. However, they only recover the naked
human bodies or heavily rely on specific pre-scanned object
and scene templates to optimize the spatial arrangement.
Researchers pay little attention to strengthening the tem-
plate-less volumetric performance capture by utilizing the
rich human-object interaction priors, especially for the mon-
ocular setting.

In this paper, we attack the above challenges and
propose RobustFusion, a robust human-object volumetric
performance capture system combined with various data-
driven visual and interaction cues using only a single
RGBD sensor (with optional multi-view setup). As illus-
trated in Fig. 1, our approach solves the challenging ambi-
guity and severe occlusions under complex human-object
interactions, achieving robust volumetric performance
reconstruction, which outperforms the baselines favorably
without using any pre-scanned templates.

Combining data-driven cues for robust volumetric recon-
struction under challenging human-object interactions is
non-trivial, let alone maintaining the lightweight property
and fast running performance under the monocular setting.
To encode the interaction pattern and alleviate the occlusion
ambiguity, our key idea is to utilize the data-driven interac-
tion cues for human motions prior under occlusions, as well
as the rich visual cues including scene semantic segmenta-
tion, body part parsing estimation, implicit occupancy learn-
ing, and human pose and shape detection. More specifically,
we first embrace the scene semantic cue for scene decoupling
to model the challenging occlusions explicitly for human-
object interactions. To prevent the disentanglement uncer-
tainty, we refine the human-object segmentation through
robust object tracking in an iterative manner, which utilizes
previous reconstruction results for temporal consistency.We

also adopt a human initialization in the first frame similar to
RobustFusion(Conf.), which utilizes the SMPL model [18],
human parsing and implicit occupancy learning to generate
a complete and fine-detailed initial model and non-rigid
motion for the human. Such initialization eliminates the
tedious self-scanning constraint for more robust human-
object performance capture. Then, we propose a robust
human performance capture scheme with the aid of various
data-driven cues. Besides the original strategy with visual
priors including the human pose, shape, and parsing to
enable re-initialization ability similar to RobustFusion
(Conf.), we further model the interaction patterns for the
challenging human-object occlusions in a data-driven man-
ner. To this end, we introduce a novel spatial relation prior
to prevent physically implausible intersections, as well as
the interaction poses prior based onGaussianMixtureModel
(GMM) and the temporal interaction prior based on LSTM
predictor to maintain natural motions, especially for those
regions under severe occlusions. Finally, we adopt an adap-
tive fusion scheme to obtain temporally coherent reconstruc-
tion results. With both the human-object occlusion analysis
and human parsing cue, the fusion weights are adaptively
adjusted to avoid deteriorated fusion caused by tracking
errors and occlusions. To summarize, ourmain contributions
include:

� We propose a robust volumetric performance recon-
struction approach for challenging human-object
interaction scenarios using only a single RGBD cam-
era, which embraces data-driven visual and interac-
tion cues to achieve significant superiority to existing
state-of-the-art methods.

� We introduce a novel scene decoupling scheme under
the volumetric capture framework for explicit disen-
tanglement of human-object interactions, with the aid
of robust object tracking and semantic refinement.

� We propose a novel and robust human-object perfor-
mance capture scheme with various data-driven
interaction cues, which can handle challenging
human motions with complex interaction patterns
and severe occlusions.

2 RELATED WORK

Human Volumetric Capture. In recent years, free-form
dynamic reconstruction methods combine the volumetric
fusion [33] and the embedded deformation [34]. The multi-
view solutions [7], [8], [10] are difficult to be deployed for
daily usage. In contrast, [11] utilizes only one common sin-
gle RGBD camera and achieves real-time dynamic recon-
struction. Yu et al. [16], [35] further take human articulated
skeleton prior into account to increase tracking robustness,
while HybridFusion [36] utilizes extra IMU sensors for
more reliable motion tracking and Xu et al. [37] model the
mutual gains between capture view selection and recon-
struction. Besides, POSEFusion [17] combines both implicit
inference network and temporal volumetric fusion in a key-
frame selection scheme and can capture more dynamic
details in invisible regions, and some methods [38], [39]
combine the neural rendering techniques. Above methods
still suffer from careful and orchestrated motions, especially

Fig. 1. Illustration of the system and results of our RobustFusion.
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for a tedious self-scanning process where the performer
needs to turn around carefully to obtain complete recon-
struction, and RobustFusion(Conf.) [19] liberates this con-
straint by introducing implicit occupancy method [22].
However, these methods either cannot handle modeling
human-object interactions (e.g., [10], [16], [17], [19], [36]) or
cannot robustly handle the fast human non-rigid motions
(e.g., [2], [13]). Comparably, our approach is more robust
for capturing challenging motions under human-object
interaction scenarios with the re-initialization ability and
enables the simultaneous reconstruction of both human and
object without the self-scanning constraint.

Object-Related Reconstruction. As for object reconstruction,
the method [40] utilizes structure-from-motion to recover
complete 3D models from RGB images. [41] introduces
color information to point cloud registration and gets more
robust results. Apart from rigid objects, the reconstruction
of non-rigid objects explored in work [11] mentioned
above. Besides, [14] reconstruct dynamic objects and static
indoor environment at the same time. Note that the
dynamic motions that [11] and [14] capture are very limited.
In addition to the traditional methods, recovering the 3D
object shape using deep neural networks has attracted
increasing attention [42], [43] in the past few years. More-
over, [44] propose a 4D human-object interaction model to
detect human-object geometric relation and the interaction
events. Recently, the work [27] learns the spatial arrange-
ments of humans and objects with pose estimation in a 3D
scene from a single RGB image. The methods [28], [30] try
to generate the plausible human model(s) in existing 3D
scenes. However, they are limited to the naked human body
or the pre-scanned models.

Occlusion-Aware Tracking Methods. Human-object interac-
tion scenarios always contain a lot of occlusions, which
introduces the challenges for our dynamic reconstruction.
There are several works dealing with the occlusion problem
in human pose estimation. [26] utilize saliency masks as vis-
ibility information to handle the occlusions. [45] solves the
occlusions by making heatmaps contain richer semantic
information. [46] employs estimated 2D confidence heat-
maps of keypoints and an optical-flow consistency con-
straint to filter out the unreliable estimations of occluded
keypoints. [47] introduces a soft attention mechanism that

learns to predict body-part-guided attention masks. Differ-
ently, our purpose is to keep natural motions and alleviate
the impacts of object-human occlusions in a temporal RGBD
sequence, with explicit human and object models. There-
fore, we choose to model the interaction patterns for the
challenging human-object occlusions in a data-driven man-
ner. The use of GMM from [48] provides us an idea of utiliz-
ing a data-driven pose distribution cue for human-object
interaction scenarios. [49] also utilizes the Gaussian mixture
alignment strategy to track hands and objects. Besides,
inspired by [50] which introduces an auto-regressive
sequence modeling for 3D motion prediction, we also take
pose prediction into account. Here, we choose the LSTM
architecture.

Data-Driven Visual Cues. Recently, data-driven techni-
ques have attracted more and more interest due to the rise
of deep learning and RGB-based human modeling
approaches bloom. First, the methods [20], [51] estimate
human 2D or 3D skeletal pose, and human parametric mod-
els [18], [52] with human pose and shape parameters pro-
vide a good sparse representation for human models, based
on which some recent work [21], [48], [53], [54], [55] also
learn the human pose and shape from a single RGB image
or video. Second, there are many approaches that directly
estimate the human geometry from RGB images, such as
the parametric representation [56], [57], implicit representa-
tion [22], [58], [59] and volume representation [23]. How-
ever, such predicted geometry lacks fine details and surfers
inaccurate pose, which is important for immersive human
modeling. Besides, some performance capture methods [60],
[61] based on RGB videos leverage the above learnable pose
detection [20], [51] or its own pose regression network to
improve the accuracy of human motion capture, but these
methods have to rely on pre-scanned template models. As
for scene visual cues, scene segmentation methods [62], [63]
fetch the semantic information of the whole scene including
the people and objects in it, and human parsing meth-
ods [24], [64] also propose to fetch the semantic information
of the human model. These data-driven methods yield
colossal potential for human performance reconstruction.
We explore building a robust human and object volumetric
capture algorithm on top of these priors and then achieve
significant superiority to previous methods.

Fig. 2. The pipeline of RobustFusion. Assuming monocular RGBD input, our approach consists of a human initialization stage only at the trig-
gered frame (Section 4.2), a scene decoupling stage that includes mask refinement and object tracking (Section 4.3), a robust human tracking
stage(Section 4.4) and volumertic fusion stage (Section 4.5) to generate live 4D results.
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3 OVERVIEW

RobustFusion achieves both human and objects volumetric
capture under a unified framework in a model-specific way,
which can perform human-object interaction reconstruc-
tions and maintain robust ability to handle challenging
human motions. As illustrated in Fig. 2, our approach takes
an RGBD video from Kinect v2 (or Kinect Azure) as input
and generates 4D meshes, achieving more robust results
than previous methods considerably. In our volumetric cap-
ture framework, we utilize TSDF [33] volume for geometry
reconstruction, just like in [10], [16]. A brief introduction of
our technical components is provided as follows:

Human Initialization. First, for model initialization, we fol-
low [19] to generate a high-quality watertight human model
with fine geometric details at the beginning, in which we
combine the implicit occupancy regression network with
the traditional non-rigid fusion pipeline using only the
front-view RGBD input. Second, we further utilize the com-
plete model to initialize both the human motions and the
visual priors before the tracking stage. We adopt a hybrid
motion representation [10], [16], [19], including the newly
sampled ED-graph and embedded SMPL [18]. Besides, vari-
ous human pose and parsing priors based on the front-view
input are associated with the initialized model.

Scene Decoupling. To reconstruct the dynamic scene,
we first apply a semantic segmentation network and
background separation to obtain the foreground masks,
including both human and objects. The segmented masks
are too coarse to be applied for tracking. Thus, with the
help of the reconstructed results, we can project 3D mod-
els to current 2D image and use a iterative strategy to
refine the masks.

Object Tracking. After scene decoupling, we track the
rigid motions of the objects by solving an optimization
problem under the Iterative Closest Point (ICP) framework
by taking account of color consistency, geometry consis-
tency, and spatial relationship between the human and
objects. The correct decoupling results provided by mask
refinement enable accurate object tracking, and the correct
tracked object models provide a good reference for scene
decoupling in turn.

Robust Human Tracking. The core of our pipeline is to
solve the hybrid motion parameters from the canonical
frame to the current camera view. We propose a robust
human tracking scheme which utilizes reliable interaction
and visual data-driven priors to optimize both the skeletal
and surface motions in an iterative flip-flop manner.
Observed that human poses have particular patterns in the
interaction with objects, we train a GMM model and LSTM
predictor to exploit the spatial and temporal prior informa-
tion in the optimization. Moreover, our scheme can handle
challenging motions with the re-initialization ability.

Object-Aware Reconstruction. We fuse the masked depth
stream into the canonical TSDF volume after motion tracing
to provide temporal-coherent results for the human and
objects separately. The human model is fused based on the
non-rigid motion field, and the object model is fused based
on the estimated rigid transformation. Based on various
visual priors and object-aware occlusion ratios, we adap-
tively adjust the fusion weight to avoid deteriorated fusion

caused by tracking errors and occlusions. Finally, dynamic
atlas [10] and per-vertex color fusion are adopted to obtain
4D textured reconstruction results.

4 TECHNICAL DETAILS

4.1 Problem Representation

Motion tracking is a core problem in our performance cap-
ture system. To robustly estimate both human and object
motions, we decouple and track them separately with the
data-driven cues. This subsection briefly overviews these
motion representations and defines the mathematical nota-
tions in our tracking framework.

The motion of rigid objects is formulated by the rigid
transformations T ¼ fTi; i 2 Ng in SEð3Þ space, where N is
the number of objects. As for human motions, we adopt the
efficient and robust double-layer surface representation for
motion representation [16], which combines the embedded
deformation (ED) and the linear human model SMPL [18].
Since we can get a complete human model after model ini-
tialization (Section 4.2), we modify the SMPL-sampled ED-
graph by the ED-graph sampled on the complete model.
We utilize SMPL to represent our skeleton motions. SMPL
is a linear body model with N ¼ 6890 vertices and K ¼ 24
joints. Before posing, the body model �T deforms into the
morphed model T ðbbbbbbb; uuuuuuuÞ with the shape parameters bbbbbbb and
pose parameters uuuuuuu as T ðbbbbbbb; uuuuuuuÞ ¼ �TþBsðbbbbbbbÞ þBpðuuuuuuuÞ, where
BsðbbbbbbbÞ and BpðuuuuuuuÞ are the shape blendshapes and pose blend-
shapes respectively. T ð�v;bbbbbbb; uuuuuuuÞ denotes the morphed 3D
position for any vertex �v 2 �T. The posed SMPL is further
formulated as the blend skinning function: WðT ðbbbbbbb; uuuuuuuÞ; J
ðbbbbbbbÞ; uuuuuuu;WÞ, in terms of the body T ðbbbbbbb; uuuuuuuÞ, pose parameters uuuuuuu,
joint locations JðbbbbbbbÞ and the skinning weights W. Specifi-
cally, for any 3D vertex vc, the linear blend skinning (LBS)
operation with the SMPL skeleton motions is formulated as
v̂c ¼ Gðvc; uuuuuuuÞvc, where Gðvc; uuuuuuuÞ ¼

P
i2B wi;vcGi is the posed

rigid transformation of vc, B is index set of bones, Gi ¼Q
k2Ki expðuk�̂kÞ is the rigid transformation of i-th bone

referencing the parent bones whose indices are Ki in the
backward kinematic chain, expðuk�̂kÞ is the exponential map
of the twist associated with k-th bone, and wi;vc is the skin-
ning weight associated with i-th bone and point vc. If vc is
on SMPL model, wi;vc is pre-defined in W. If vc is on the
fused surface, wi;vc is given by the weighted average of its
knn-nodes.

Non-rigid motions of the human is represented by a
embedded deformation node-graph G ¼ fdqj; xjg, consist-
ing of the dual quaternions fdqjg and the corresponding
ED nodes fxjg. SE3ðdqjÞ denotes the rigid transformation
in SEð3Þ space. Then for any 3D vertex vc in the canonical
volume, the ED warping operation is formulated as follows:

~vc ¼ EDðvc;GÞ ¼ SE3

� X
i2NðvcÞ

wðxi; vcÞdqi

�
vc; (1)

where NðvcÞ is a set of node neighbors of vc, and wðxi; vcÞ ¼
expð�kvc � xik22=ð2r2kÞÞ is the influence weight of the i-th
node xi to vc. The influence radius rk is set as 0.075 m for all
the ED nodes. Similarly, ~nvc ¼ EDðnvc ;GÞ denotes the
warped normal of vc using the ED motion field G.
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4.2 Human Initialization

Due to complex non-rigid human motions, the good initial
human model and motion is critical for us to worry-free
focus on human-object interactions. Fortunately, [19] pro-
vides us an available robust human performance capture
baseline as initialization.

Model Initialization. To eliminate the orchestrated self-
scanning constraint and the consequent fragile tracking of
monocular capture, we propose a model initialization
scheme using only the front-viewRGBD input. As illustrated
in Fig. 3, to generate high-fidelity geometry details, we first
utilize the traditional ED-based non-rigid fusionmethod [11],
[37] to fuse the depth stream into live partial TSDF volume.
Once the average accumulated TSDF weight in the front-
view voxels reaches a threshold (32 in our setting), an RGBD-
version PIFu network from previous work [19] is triggered
to generate a watertight mesh, in which this frame is called
triggered frame. Then, to align the partial TSDF and the com-
plete mesh, we jointly optimize the unique human shape bbbbbbb0

and pose uuuuuuu0, as well as the EDmotion fieldG0 from the TSDF
volume to the completemesh as follows:

EEEEEEEcompðG0;bbbbbbb0; uuuuuuu0Þ ¼ �vdEEEEEEEvdata þ �mdEEEEEEEmdata þ �bindEEEEEEEbind

þ �priorEEEEEEEprior: (2)

The volumetric data term EEEEEEEvdata measures the misalignment
error between the SMPL and the reconstructed geometry in
the partial TSDF volume:

EEEEEEEvdataðbbbbbbb0; uuuuuuu0Þ ¼
X
�v2�T

cðDðWðT ð�v;bbbbbbb0; uuuuuuu0Þ;bbbbbbb0; uuuuuuu0ÞÞ; (3)

where Dð�Þ takes a point in the canonical volume and
returns the bilinear interpolated TSDF, and cð�Þ is the robust
Geman-McClure penalty function. The mutual data term
Emdata further measures the fitting from both the TSDF vol-
ume and the SMPL model to the complete mesh, which is
formulated as the sum of point-to-plane distances:

EEEEEEEmdata ¼
X
ð�v;uÞ2C

cðnT
u ðWðT ð�v;bbbbbbb0; uuuuuuu0ÞÞ � uÞÞþ

X
ð~vc;uÞ2P

cðnT
uð~vc � uÞÞ; (4)

where C and P are the correspondence pair sets found via
closest searching; u is a corresponding 3D vertex on the com-
plete mesh and nu is its normal. Note that the pose prior term
EEEEEEEprior from [48] penalizes the unnatural poses while the bind-
ing term EEEEEEEbind from [16] constrains both the non-rigid and
skeletal motions to be consistent. We solve the resulting
energyEEEEEEEcomp under the ICP framework, where the non-linear
least-squares problem is solved using Levenberg-Marquardt
(LM)methodwith a custom-designed PreconditionedConju-
gate Gradient (PCG) solver on GPU [7], [65]. Finally, to seam-
lessly blend both the partial volume and the complete mesh
in the TSDF domain, we update the voxel as follows:

DðvÞ  DðvÞWðvÞ þ dðvÞwðvÞ
WðvÞ þ wðvÞ ;

WðvÞ  minðWðvÞ þ wðvÞ; wmaxÞ; (5)

where DðvÞ and WðvÞ denote its TSDF value and accumu-
lated weight, respectively, and wmax is set as 32 to prevent
over-smoothness of geometry during volumetric fusion in
Section 4.5 and the corresponding projective SDF value dðvÞ
and the updating weightwðvÞ are as follows:

dðvÞ ¼ ðu� ~vÞsgnðnT
u ðu� ~vÞÞ; wðvÞ ¼ 1=ð1þNðvÞÞ; (6)

Here, For any 3D voxel v, ~v denotes its warped position
after applying the ED motion field; NðvÞ denotes the num-
ber of non-empty neighboring voxels of v in the partial vol-
ume which indicates the reliability of the fused geometry,
and sgnð�Þ is the sign function to distinguish positive and
negative SDF.

Motion Initialization. The complete model after model ini-
tialization provides a reliable initialization for both the
human motion and the utilized visual priors. As described
in Section 4.1, before the tracking stage, we first re-sample
the sparse ED nodes fxig on the mesh to form a non-rigid
motion field, denoted as G, and then we rig the mesh with
the pose uuuuuuu0 from its embedded SMPL model in model ini-
tialization and transfer the SMPL skinning weights to the
ED nodes fxig. For any 3D point vc in the capture volume,
let ~vc and v̂c denote the warped positions after the embed-
ded deformation and skeletal motion, respectively. Note

Fig. 3. Human model and motion initialization pipeline. Assuming the front-view RGBD input, both a partial TSDF volume and a complete mesh are
generated, followed by the alignment and blending operations to obtain a complete human model with fine geometry details, based on which motion
is initialized by re-sampling the ED-node-graph and semantic binding.
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that the skinning weights of vc for the skeletal motion are
given by the weighted average of the skinning weights of its
knn-nodes. To initialize the pose prior, we apply Open-
Pose [20] on the RGBD image to obtain the 2D and lifted 3D
joint positions, denoted as P2D

l and P3D
l , respectively, with a

detection confidence Cl.Then, we find the closest vertex
from the watertight mesh to P3D

l , denoted as Jl, which is the
associated marker position for the l-th joint. To utilize the
semantic visual prior, we apply the light-weight human
parsing method [24] to the triggered RGB image to obtain a
human parsing image L. Then, we project each ED node xi
into L to obtain its initial semantic label li.

4.3 Scene Decoupling and Object Tracking

Accurate scene decoupling is the premise of robust motion
capture that makes full use of the object-specific priors. Oth-
erwise, the wrong segmentation reduces tracking accuracy,
and segmentation noise will be fused in the models. How-
ever, the semantic segmentation network unavoidably has
noise in human-object junction and occlusion, which can
not be handled only by the input data. Therefore, we take
advantage of our reconstructed human and object models
to iteratively refine the segmentation masks to prevent
disentanglement uncertainty and maintain temporal consis-
tency. As illustrated in Fig. 2, the proposed mask refinement
based on initial semantic segmentation provides accurate
segmentation of both human and object. Then we can
decouple the dynamic scene between rigid object motions
and non-rigid human motions to track and reconstruct
them. In this subsection, we summarize the mask refine-
ment and the object tracking as follows.

Algorithm 1.Mask Refinement

Input:Mo;Mh

Output:Mr
o ,M

r
h

1: Mp
o ¼ pðRoÞ

2: Mp
h ¼Mh

3: for i ¼ 0; i < 3, iþþ do
4: Mr

o ¼Mo þMp
o

5: Mr
o ¼Mr

o � ðdepðMp
hÞ < depðMr

oÞÞ
6: To ¼ ICP ðMr

oÞ,Mp
o ¼ pðTo �RoÞ

7: Mr
h ¼Mh � ðdepðMp

o Þ < depðMhÞÞ
8: Mp

h ¼ pðtrackðMr
hÞÞ

9: end for
11: returnMr

o ,M
r
h

Mask Refinement. We utilize a semantic segmentation
method [62] and the human segmentation from Kinect SDK
to get the human masks. For objects, in addition to extract
object masks by utilizing background subtraction, we can
also optionally obtain the labeled object masks from the seg-
mentation network. For operation efficiency, we execute the
segmentation network every five frames. At the same time,
Kinect SDK provides the human mask for the entire
sequence, and the object masks are provided by background
separation for the remaining frames. With the human and
object masks, we use the masked point cloud for motion
tracking and reconstruction. However, wrong segmentation
often occurs in the place where people and objects connect.
Directly using the coarse segmentation mask leads the

unstable tracking and erroneous reconstruction. Therefore,
we propose a refinement strategy to obtain the accurate
object and human masks, illustrated in Algorithm 1.
Besides, we demonstrate the results of the mask refinement
pipeline in Fig. 4.

Given the coarse object mask Mo and human mask Mh

provided by the segmentation network and Kinect SDK, we
aim to get the refined object mask Mr

o and human mask Mr
h.

Here, Ro is the reconstructed object model of the previous
frame. Function pð�Þ projects the reconstructed model to get
the projected mask. Mp

o and Mp
h is the projected object and

human mask based on the reconstructed models. Due to
temporal continuity, the current object mask is similar to
the previous frame. The current object mask for tracking is
refined as Mr

o ¼Mo þMp
o . Then we remove the human

occlusion by comparing the depth (Algorithm 1 Line.5),
where function depð�Þ returns the depth value for the mask.
Based on the refined object mask Mr

o , the transformation
between current frame and previous frame To is solved by
optimization ICP ð�Þ and the projected object mask Mp

o is
updated. Then we get the refined human mask Mr

h by com-
paring the depth (Algorithm 1 Line.7). Function trackð�Þ
returns the update human model based on the refined mask
Mr

h. Then the projected human mask is updated by the
tracked human model (Algorithm 1 Line.8). Moreover, we
also utilize an iteration framework to raise the refinement
accuracy. With the mask refinement, we successfully obtain
the correct masks.

Object Tracking. To robustly track the objects, we opti-
mize the rigid motions (T ¼ fTig; i 2 N) of the correspond-
ing object point clouds under ICP iteration framework as
follows:

EEEEEEEobjectðTÞ ¼ �colorEEEEEEEcolor þ �geoEEEEEEEgeo þ �sp oEEEEEEEsp o: (7)

The color term EEEEEEEcolor is achieved by the colored point cloud
registration [41], which encourages the color consistency as
follows:

EEEEEEEcolor ¼
X
i2N

X
ðp;qÞ2R

ðCpðfðTiqÞÞ � CðqÞÞ2; (8)

Fig. 4. The results of the proposed mask refinement. (a,e) are the seg-
mentation mask before and after refinement. We sum the original object
mask (top of (b)) and projection mask of the previous frame (bottom of
(b)) to get the combined mask (top of (c)), then subtract the projection of
the human body and remove noise based on point cloud continuity to get
a denoised mask (bottom of (c)). Based on the denoised mask, we opti-
mize Eq.(7) to get the transformation of the object between two adjacent
frames (top of (d)) then use the estimated transformation to get the
updated projection mask (bottom of (d)). The detailed iteration proce-
dure is explained in Algorithm. 1.
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where N is the number of objects, R is the correspondence
pair sets found via closest searching and p, q are the closest
points of frame t and frame t� 1. Function Cð�Þ returns
color of the point q while Cpð�Þ is a pre-computed function
continuously defined on the tangent plane of p and fð�Þ is
the projection function that projects a 3D point to the tan-
gent plane. The geometry term EEEEEEEgeo encourages the geome-
try consistency as follows:

EEEEEEEgeo ¼
X
i2N

X
ðp;qÞ2R

ðnT
pðp� TiqÞÞ2; (9)

where np is the normal of the point p. To generate a healthy
spatial relationwithout implausible interpenetration between
human and objects, we introduce an interpenetration term
Esp o as follows:

EEEEEEEsp o ¼
X
i2N

X
p2Oi

cðtDðTipÞÞþ
X

i;jði6¼jÞ2N

X
p2Oi

cðtDojðTipÞÞ: (10)

where Oi is the i-th object, p is point of Oi, Dð�Þ is the same
as in Eq. (3), Dojð�Þ takes a point in the live TSDF volume of
j-th object and returns the bilinear interpolated TSDF value,
and cð�Þ is the robust Geman-McClure penalty function,
and t is the indicator function which equals to 1 only if the
visited TSDF value is positive (inside the corresponding
volume).

4.4 Robust Human Tracking

As illustrated in Fig. 5, we propose a novel performance
capture scheme to track challenging human motions under
complex human-object interaction scenarios robustly, in
which we introduce a spatial relation prior to prevent
implausible interactions, data-driven interaction cues to
maintain natural motions, especially for those regions
under severe human-object occlusions, as well as the
human pose, shape and parsing priors to enable re-initiali-
zation ability. We first optimize the motion fields

described in Section 4.1 including both the skeletal pose
and surface-sampled ED node-graph in a flip-flop iteration
manner.

Skeleton Tracking. During each ICP iteration, we first opti-
mize the skeletal pose uuuuuuu of the human model, which is for-
mulated as follows:

EEEEEEEsmotðuuuuuuuÞ ¼ �sdEEEEEEEsdata þ �poseEEEEEEEpose þ �priorEEEEEEEpriorþ
�tempEEEEEEEtemp þ �interEEEEEEEinter: (11)

Here, since human motions have particular patterns in
the interactions with objects, we introduce a human-object
interaction term EEEEEEEinter to Eq. (11), which includes the spacial
relation prior, data-driven interaction pose prior, and
motion prediction prior to keep natural motions and allevi-
ate the impacts of severe object-human occlusions, formu-
lated as follows:

EEEEEEEinter ¼ �gmmEEEEEEEgmm þ �lstmEEEEEEElstm þ �sp h1EEEEEEEsp h; (12)

where EEEEEEEgmm, EEEEEEElstm and EEEEEEEsp h are energies of interaction pose
prior term, motion prediction prior term and interpenetra-
tion term respectively. The interaction pose and motion
prior terms come from the experiential data-driven cues,
representing the single-frame and temporal priors. At the
same time, the interpenetration term represents the spatial
prior of human-object interaction. We collect approximately
200000 human-object interaction temporal poses with SMPL
parameters using RGBD systems [7], [10], in which we
avoid object occlusion or imitate human-object interactions
in the target camera view. The interaction pose prior term
resembles the prior term EEEEEEEprior from [48]. It is based on a
GMM (16 Gaussians) fitted to the above data and formu-
lated as follow:

Egmm ¼ �log
�X

j

wjNðuuuuuuu;mj; djÞ
�
; (13)

where wj, mj and dj are the mixture weight, the mean, and
the variance of jth Gaussian model, respectively. Moreover,

Fig. 5. The pipeline of our robust performance capture scheme. Assuming the masked RGBD input, We track the object based on the space relation
cue. Then, both skeletal and non-rigid motions are optimized with the associated human-object interaction and data-driven visual cues. Finally, an
object-aware adaptive volumetric fusion scheme is adopted to generated 4D models.
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we also train an LSTM predictor using the above data to
predict the current pose in terms of the poses of the previ-
ous nine frames and formulate the motion prediction prior
term EEEEEEElstm as follows:

EEEEEEElstm ¼ cðuuuuuuu � Lðuuuuuuut�9; uuuuuuut�8; . . .; uuuuuuut�1ÞÞ; (14)

where cð�Þ is the robust Geman-McClure penalty function;
uuuuuuui; ði ¼ t� 9; t� 8; . . .; t� 1Þ are the skeleton poses of the
previous 9 frames; Lð�Þ is the LSTM prediction fuction. The
interpenetration term EEEEEEEsp h prevents unphysical intersec-
tions from human to objects in space dimension:

EEEEEEEsp h ¼
X
v2T

cðtDoðWðT ðv;bbbbbbb; uuuuuuuÞ; uuuuuuuÞÞ; (15)

where Doð�Þ takes a point in the live TSDF volume of the
object and returns the bilinear interpolated TSDF value, and
cð�Þ is the robust Geman-McClure penalty function, t is the
indicator function which equals to 1 only if the TSDF value
for the object of the vertex v on SMPL is positive (inside the
object volume).

Besides, we also introduce the pose term EEEEEEEpose in [19] and
update its pose detectors to better encourage the skeleton to
match the detections obtained by CNN from the RGB
image, including the 2D position P2D

l , lifted 3D position P3D
l

and the pose parameters uuuuuuud from OpenPose [20] and
EFT [53] , respectively:

EEEEEEEpose ¼ cðFT ðuuuuuuu � uuuuuuudÞÞ þ
XNJ

l¼1
fðlÞðkpðĴlÞ � P2D

l k22þ

kĴl � P3D
l k22Þ; (16)

where cð�Þ is the robust Geman-McClure penalty function;
Ĵl is the warped associated 3D position and pð�Þ is the pro-
jection operator. The indicator fðlÞ equals to 1 if the confi-
dence Cl for the lth joint is larger than 0.5, while F is the
vectorized representation of ffðlÞg. Finally, among the other
terms, EEEEEEEsdata measures the point-to-plane misalignment
error between the warped geometry in the TSDF volume
and the depth input:

EEEEEEEsdata ¼
X

ðvc;uÞ2P
cðnT

u ðv̂c � uÞÞ; (17)

where P is the corresponding set found via a projective
searching; u is a sampled point on the depth map while vc
is the closet vertex on the fused surface; the temporal term
EEEEEEEtemp encourages coherent deformations by constraining
the skeletal motion to be consistent with the previous ED
motion:

EEEEEEEtemp ¼
X
xi

kx̂i � ~xik22; (18)

where ~xi is the warped ED node using non-rigid motion
from previous iteration; and the prior term EEEEEEEprior from [48]
penalizes the unnatural poses.

Surface Tracking. To capture realistic non-rigid defor-
mation defined by ED-node graph G, on top of the skele-
ton tracking result, we solve the surface tracking energy
as follows:

EEEEEEEemotðGÞ ¼ �edEEEEEEEedata þ �sp h2EEEEEEEsp h þ �regEEEEEEEregþ
�tempEEEEEEEtemp:

(19)

Here the dense data term Eedata jointly measures the dense
point-to-plane misalignment and the sparse landmark-
based projected error:

EEEEEEEedata ¼
X
ðvc;uÞ2P

cðnT
uð~vc � uÞÞ þ

XNJ

l¼1
fðlÞkpð~JlÞ � P2D

l k22; (20)

where ~Jl is the warped associated 3D joint of the lth joint in
the fused surface. The interpenetration term EEEEEEEsp h2 is as
follows:

EEEEEEEsp h2 ¼
X
v2T

cðtDoð~vÞÞ; (21)

note that the interpenetration term is associated with a
smaller weight : sp h2 ¼ sp h1=10. The regularity term
EEEEEEEreg from [16] produces locally as-rigid-as-possible
(ARAP) motions to prevent over-fitting to depth inputs.
Besides, the x̂i after the skeletal motion in the temporal
term EEEEEEEtemp as formulated above is fixed during current
optimization.

Both the pose and non-rigid optimizations in Eqs. (11)
and (19) are solved using LM method with the same PCG
solver on GPU [7], [65]. Once the confidence Cl reaches 0.9
and the projective error kpð~JlÞ � P2D

l k22 is larger than 5.0 for
the lth joint, the associated 3D position Jl on the fused sur-
face is updated via the same closest searching strategy of
the initialization stage. When there is no human detected in
the image, our whole pipeline will be suspended until the
number of detected joints reaches a threshold (10 in our
setting).

4.5 Object-Aware Reconstruction

After the above optimization, we separately fuse the
masked depth into the respective canonical TSDF volume of
the human and objects with occlusion analysis and human
semantic cue to temporally update the geometric details.
Note that each voxel in canonical space is updated using
Eq. (5), while updating weight wðvÞ is different between
human and objects.

For human reconstruction, we first discard the voxels
which are collided or warped into invalid input. Then, to
avoid deteriorated fusion caused by challenging motion, an
effective adaptive fusion strategy as shown in Fig. 5 is pro-
posed to model semantic motion tracking behavior. To this
end, we apply the human parsing method [24] to the current
RGB image to obtain a human parsing image L. For each ED
node xi, recall that li is its associated semantic label during
initialization while Lðpð~xiÞ is current corresponding pro-
jected label. Then, for any voxel v, we formulate its updat-
ing weightwðvÞ as follows:

wðvÞ ¼ exp
�kFT ðuuuuuuu� � uuuuuuudÞk22

2p

 ! X
i2NðvcÞ

’ðli; Lðpð~xiÞÞÞ
jN ðvcÞj ; (22)

where uuuuuuu� is the optimized pose; NðvcÞ is the collection of
the knn-nodes of v; ’ð�; �Þ denote an indicator which equals
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to 1 only if the two input labels are the same. Note that
such a robust weighting strategy measures the tracking
performance based on the human pose and semantic pri-
ors. Then, wðvÞ is set to be zero if it is less than a truncated
threshold (0.2 in our setting), to control the minimal inte-
gration and further avoid deteriorated fusion of severe
tracking failures. Mocc ¼ ðdepðMp

hÞ > depðMp
o ÞÞ is the mask

of human occluded by object. Function Sð�Þ returns the
pixel number of mask. When the severe object-human
occlusion occurs as SðMoccÞ=SðMp

hÞ is bigger than a thresh-
old (0.3 in our setting), we also set wðvÞ to zero in case
deteriorated fusion caused by false segmentation results
and tracking errors caused by occlusions. As for object
reconstruction, Rin is the root mean square error (RMSE)
of all inlier correspondences in the ICP framework. TSDF
fusion is performed every five frames based on Eq. (5)
only if Rin is less than a certain value (0.003 in our setting),
in which the updating weight wðvÞ is formulated as
wðvÞ ¼ 0:0048

Rinþ0:0024 . Again, similar to human volumetric
fusion, once the human occludes an object, we stop the
TSDF fusion for the whole object. Finally, the dynamic
atlas scheme [10] and per-vertex color fusion are adopted
to obtain 4D textured reconstruction results for human
and objects, respectively.

5 EXPERIMENTAL RESULTS

Fig. 6 demonstrates the results of RobustFusion, where both
the challenging motions with human-object interactions
and the fine geometry and texture details are faithfully cap-
tured. Our approach can even faithfully reconstruct the
interaction scenarios with multiple performers and various
objects (see the last row of Fig. 6). Please also kindly refer to
the supplemental video for the sequential 4D reconstruction
results.

5.1 Performance Runtime and Experimental Setting

We run our experiments on a PC with an NVIDIA GeForce
GTX TITAN Xp GPU and an Intel Core i7-7700 K CPU. Our
human initialization takes 15 s, and the following robust
performance capture pipeline runs at an average of 135 ms
per frame, where the visual priors collecting takes 97 ms,
the robust human-object tracking takes around 21 ms with 4
ICP iteration and 17 ms on average for all the remaining
computations. Note that the semantic segmentation net-
work and volumetric fusion for objects are executed every
five frames.

As for optimization parameters in all experiments, we
use the following empirically determined parameters: �vd ¼
1:0, �md ¼ 2:0, �bind ¼ 1:0, �prior ¼ 0:01, �color ¼ 0:1, �geo ¼
0:9, �sp o ¼ 1:0, �sd ¼ 4:0, �pose ¼ 2:0, �temp ¼ 1:0, �inter ¼ 1:0,
�gmm ¼ 0:02, �lstm ¼ 0:1, �sp h1 ¼ 2:0, �sp h2 ¼ 0:2, �ed ¼ 4:0
and �reg ¼ 5:0. For the ED model, we use the four nearest
node neighbors for ED warping and the eight nearest node
neighbors to construct the ED graph. For the TSDF voxel,
the size is set as 4 mm in each dimension. As for experimen-
tal data, we capture 16 human-object interaction sequences
using an Azure Kinect RGBD sensor and also borrow one
human-only sequence from [36], with 48000 frames, 7 per-
formers and 7 objects.

5.2 Comparison to the State-of-The-Arts

For throughout comparison, we compare our RobustFusion
against the state-of-the-art methods in this subsection both
qualitatively and quantitatively, includingDoubleFusion [16],
UnstructuredFusion [10], HybridFusion [36], RobustFusion
(Conf.) [19] and POSEFusion [17].

Qualitative Comparison. These state-of-the-art methods are
restricted to human reconstruction without modeling
human-object interactions, and UnstructuredFusion [10] is a
multi-view method. For a fair comparison of dynamic
reconstruction at the scenes with objects, we test the above
state-of-the-art methods on the same refined segmentation
results of the human in our setting and modify Unstructur-
edFusion [10] into the monocular setting by removing their
online calibration stage.

The qualitative comparison of our approach against
DoubleFusion [16], single-view UnstructuredFusion [10]
and RobustFusion(Conf.) [19] is as shown in Fig. 7. Both
DoubleFusion [16] and UnstructuredFusion [10] suffer
from the fast human motions and the severe occlusions
due to the human-object interactions. Moreover, without a
complete model due to the lack of orchestrated self-cir-
cling motions, they tend to integrate erroneous surfaces at
the newly fused region. With the aid of various visual pri-
ors, RobustFusion(Conf.) [19] is more robust to the fast
motions but still suffers from severe occlusions, leading to
wrong tracking results in the limb regions. In contrast,
benefit from our robust human tracking scheme based on
data-driven interaction and visual cues, our approach
achieves significantly more robust tracking results, espe-
cially for challenging occluded and fast motions. Besides,
we compare against the latest volumetric method POSEFu-
sion [17], which combines implicit inference network with
a key-frame selection strategy to capture details in invisi-
ble regions. As shown in Fig. 8, our approach can achieve
more accurate human tracking and visually pleasant
reconstruction results with the aid of human-object inter-
action cues. Nevertheless, our approach can faithfully
reconstruct both the humans and objects in the interaction
scenarios, which is unseen in the previous monocular
fusion approaches.

Quantitative Comparison. For quantitative comparison, we
first utilize the average projective numerical metric. Specifi-
cally, we render the reconstructed result to a depth map in
the camera view and compute its MAE (Mean Absolute
Error) by taking the depth input as the reference only in the
intersection between the rendered surface and the human
depth. Note that even without ground truth reconstruction,
this MAE metric encodes the reconstruction error for the
non-rigid motion capture process of each method, provid-
ing a reliable quantitative comparison. We only compute
MAE in the human regions for a fair comparison since pre-
vious methods cannot reconstruct objects. Table 1 demon-
strates the MAE of different sequences and average value
across all sequences in our experiments, in which our
method leads to considerably less error. Moreover, Fig. 9
demonstrates that our method achieves high-quality recon-
struction results with less accumulated artifacts, using the
corresponding sequence “Human-object interactions with a
sofa” in Table 1. Note that our MAE for this sequence is
6.60 mm, compared favorably with 17.24 mm for the
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reconstructed results provided by POSEFusion [17]. These
quantitative comparisons above reveal the effectiveness of
our method for more robust and accurate human motion
tracking and reconstruction.

To illustrate our robustness for human-specific motions,
we further compare against HybridFusion [36], which uses
extra body-worn IMU sensors. We utilize the challenging
sequence with ground truth from [36] and remove their

Fig. 6. 4D human and object reconstructed results of the proposed RobustFusion system, and the interacted objects include a sofa, a cart, two car-
tons, a piece of luggage, a chair, and a toy.

SU ETAL.: ROBUSTFUSION: ROBUST VOLUMETRIC PERFORMANCE RECONSTRUCTION UNDER HUMAN-OBJECT 6205

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 22,2023 at 12:34:28 UTC from IEEE Xplore.  Restrictions apply. 



orchestrated self-scanning process for our methods. Even
though this sequence does not include human-object inter-
action scenarios, such an experiment further illustrates that
our approach with data-driven interaction cues can handle
challenging human-only motions. The quantitative compar-
ison in terms of the per-frame error in Fig. 10e and the aver-
age errors among the whole sequence in Table 2
demonstrate that both our approach and our preliminary
version [19] achieve a significantly better result than Dou-
bleFusion and even comparable performance against
HybridFusion. Note that HybridFusion still relies on the
self-scanning stage for sensor calibration and suffers from
missing geometry caused by the body-worn IMUs as shown
in Fig. 10a, while our approach eliminates such tedious self-

scanning and achieves complete and plausible reconstruc-
tion results.

5.3 Ablation Study

In this subsection, we evaluate each technical contribution
of our RobustFusion separately. Specifically, we evaluate
the human initialization, mask refinement, object tracking,
robust human tracking, and object-aware adaptive fusion,
respectively. Moreover, we also evaluate our extension
capability by experiments in multi-person and multi-cam-
era scenarios.

Human Initialization. For completeness of evaluation, we
first evaluate the human initialization scheme on a sequence
without a carefully designed self-scanning process orga-
nized as model completion and initialization in perfor-
mance capture stages in [19]. As shown in Fig. 11, without
model initialization, only partial initial geometry with

Fig. 7. Qualitative comparison. (b-d) are the geometry results of State-of-the-arts. (e) are the geometry/texture results of our method.

Fig. 8. Qualitative comparison. The first row is the reference RGB
images. The second to third row are the geometry results of POSEFu-
sion [17] and our method, respectively.

TABLE 1
Average Projective Numerical Errors (mm) of Our Captured
Sequences for the Concerned Methods: DoubleFusion [16],
UnstructuredFusion [10], RobustFusion(Conf.) [19] and Our
Methods, Where the Corresponding Sequences Can Refer to

the Supplementary Video

Human-object Interactions [16] [10] [19] Ours

with luggage & chair 29.66 28.34 22.32 17.74
with two cartons 16.56 11.38 8.37 7.61
dragging things 9.11 8.56 6.45 4.96
rotating a chair 17.45 15.10 10.34 8.61
with a luggage 18.14 13.24 9.42 7.26
with luggage & carton (1) 14.35 10.57 8.51 7.87
with luggage & carton (2) 18.48 13.82 10.72 8.50
with a cart (girl) 17.75 12.47 9.49 8.87
with cart & carton (1) 17.83 13.27 10.34 8.80
with cart & carton (2) 12.93 7.91 5.48 5.05
with a sofa 11.64 7.66 7.11 6.60
with a cart (boy) 23.14 18.96 15.55 15.04
with backpack & toy 34.34 32.12 28.34 23.37
average across above 18.57 14.88 11.73 10.02
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SMPL-based ED node-graph leads to inferior tracking and
erroneous reconstruction results. This exactly explains the
reason that DoubleFusion [16] and UnstructuredFusion [10]
fail without careful self-scanning process. To evaluate our
alignment during model initialization and demonstrate the
superiority of our modified motion representation over
original representation in previous methods [10], [16], the
skeletal pose is optimized during alignment optimization,
and only SMPL-based double-layer ED-graph is adopted
for motion tracking, where the results are still imperfect. In
contrast, our approach with both model and motion initiali-
zation successfully obtains a watertight and fine-detailed
human mesh and enables more robust motion tracking.

Mask Refinement and Object Tracking.Here we evaluate the
proposed mask refinement in Fig. 12. Since the toy is unla-
beled in the network [62], we extract its masks by utilizing
background subtracting. Therefore, the segmentation of
objects is also dependent on human segmentation results.
The original human segmentation mask in Fig. 12b is inac-
curate, especially when human-object interaction occurs,
leading to misaligned object masks due to the overlaying of
the object on the performer. Then, directly using such coarse
segmentation results leads to unstable tracking and errone-
ous object reconstructions as shown in Fig. 12c. In contrast,
with our mask refinement scheme, the object is separated
from the human segmentation result correctly (Fig. 12d). As
a result, our approach achieves more robust human and
object tracking results in Fig. 12e, which illustrates the effec-
tiveness of our layer-wise strategy and mask refinement
scheme.

Besides, Fig. 13 further demonstrates the robustness of
our mask refinement for object mask segmentation and
rigid tracking. Although sofa/chair is labeled in the net-
work [62], it occasionally fails to extract the masks as shown
in the second row of Fig. 13. With the refined masks and

Fig. 9. Qualitative comparison. The first row indicate the geometry
results and the color-coded maps indicate the projective errors.

Fig. 10. Quantitative comparison. (a-d) are the reconstruction geometry
results. (e) is the error curves.

TABLE 2
Average Errors on the Entire Sequence Compared to the

Ground Truth Observation From the Vicon System, for These
Three Methods: DoubleFusion [16], HybridFusion [36], Robust-

Fusion(Conf.) [19] and Our Method, Respectively

[16] [36] [19] Ours

average error 0.1904 m 0.0417 m 0.0553 m 0.0546 m

Fig. 11. Evaluation of human initialization. (a) is the 3Dhumanmodel in two
views. (b) is the ED node-graph that formulates the surface motions. (c) is
the following tracking results that overlay on reference color image based
on the corresponding 3D surface geometry and the ED node-graph.The
results from the first row to the third are the results without human initializa-
tion, with initialization only using skeleton optimization and SMPL-based
node-graph, andwith our entire initialization process, respectively.
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object tracking optimization in the fourth row of Fig. 13, we
can achieve more accurate object tracking. The correspond-
ing quantitative comparison in Fig. 14 further demonstrates
that our method achieves the highest accuracy, where the
MAE for the entire object sequence is 35.10 mm and

11.11 mm for our method w/o and with mask refinement,
respectively.

Robust Human Tracking. Our robust human tracking is
based on human-object spatial relation analysis using vari-
ous data-driven cues. Here, we evaluate them one by one.
First, as shown in Fig. 15, we evaluate our human-object
spatial relation cue – the interpenetration term for human
motion optimization. Note that we eliminate the interpene-
tration term by setting �sp h1 ¼ 0 and �sp h2 ¼ 0 in Fig. 15b,
where the human model erroneously inserts into the cart.
Differently, our full pipeline provides an essential spatial
constraint for human motions estimation, especially in
occlusion cases where no direct observation is available like
the leg in Fig. 15. Benefit from our interpenetration term, we
successfully avoid the interpenetration between human and
cart models as demonstrated in Fig. 15c.

Then, we evaluate the data-driven visual cues – the pose
term in human motion optimization. Similar to the prelimi-
nary method [19], we compare to the variation of our pipe-
line without pose prior in two scenarios where fast motion
or disappear-reoccurred case happens. The first row of
Fig. 16 demonstrates that our variation without pose term

Fig. 12. Evaluation of the mask refinement. (a) Reference color images.
(b) The human masks without refinement. (c) The reconstruction results
without refinement. (d) The human masks with refinement. (e) The
reconstruction results with refinement.

Fig. 13. Evaluation of the mask refinement (for objects). The first row
demonstrates the input color images. The second and the fourth row are
the original masks from the network [62] and our refined masks, respec-
tively. The third and the last row overlaying on the color images are the
tracking results using the object masks before and after mask refine-
ment, respectively.

Fig. 14. Evaluation of the mask refinement (for objects). The color-coded
maps indicate the projective error maps, in which the two rows are corre-
sponding to the results in Fig. 13.

Fig. 15. Evaluation of the interpenetration term. (a) Reference color
images. (b) The results without interpenetration term. (c) The results
with interpenetration term.
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suffers from severe accumulated error, especially for the
limb region with faster motions and more depth noise from
the commercial sensor. Our full pipeline relieves this prob-
lem and help achieve superior tracking results for these
challenging cases. Besides, as shown in the second row of
Fig. 16, with the aid of pose detection and scene segmenta-
tion, the system can screen the disappearance and reappear-
ance of the person with reconstructing object and achieve
the recovery from the failing track.

Besides, the evaluation of empirical data-driven terms,
including an interaction pose prior and a temporal motion
prediction prior, is provided in Fig. 17. We eliminate the
data-driven interaction terms by setting �lstm ¼ 0 and
�gmm ¼ 0. Then, due to the severe occlusions between the
performer and the sofa, this variation generates unnatural
motion estimation for the occluded legs as shown in the dif-
ferent rendered views in Fig. 17b. With the aid of the empir-
ical constraint, our approach can generate more plausible
and reasonable results, as shown in the corresponding sub-
figures (c) of Fig. 17. In this comparison, the pose estimation
of the unobserved region is up to the continuity of observed
joints in the kinematic chain, similar to the unconstrained
optimization that may lead to severe deviation from the real
situation. Differently, the human skeletal pose estimation
with an empirical constraint can bewell deducted by the histor-
ical experience, including both interaction pose distribution

prior based on GMM and temporal motion prediction based
on LSTM.

Furthermore, we also evaluate the impact of the occlu-
sion ratio on the tracking results. Here, the occlusion ratio is
calculate as SðMoccÞ=SðMp

hÞ in Section 4.5. To simulate the
different occlusion ratios, we expand the object occlusion
masks manually through image expansion. Then, we evalu-
ate the tracking error by calculating the mean square error
(MSE) between the projection pixels of the reconstructed
model and pixels of input images. As shown in Fig. 18, with
the increase of occlusion ratios, the tracking accuracy
decreases in a small range. The qualitative results are as
demonstrated in Fig. 19, in which we can see that the severe
occlusion leads to inaccurate but reasonable results due to
the lack of information.

Object-Aware Adaptive Fusion. To evaluate our object-
aware adaptive fusion scheme based on the occlusion rela-
tion and semantic errors, we compare our full volumetric
fusion pipeline and the method variation without the
object-aware adaptive fusion strategy. The comparison in
Fig. 20a demonstrates that our full pipeline can effectively
avoid the severe accumulated error for those regions with

Fig. 16. Evaluation of pose term. The top row of (a) and (b) are results of
our method without pose term. The bottom row of (a) and (b) are results
of our approach with pose term in optimization.

Fig. 17. Evaluation of the prior constraints. (a) Reference color images.
(b) The results without prior constraints (front view and side view respec-
tively). (c) The results with prior constraints (front view and side view
respectively).

Fig. 18. Quantitative evaluation of occlusion ratios. The error curves for 4
sequences.

SU ETAL.: ROBUSTFUSION: ROBUST VOLUMETRIC PERFORMANCE RECONSTRUCTION UNDER HUMAN-OBJECT 6209

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 22,2023 at 12:34:28 UTC from IEEE Xplore.  Restrictions apply. 



high-speed motions, such as jumping over the chair.
Besides, as shown in the second row of Fig. 20b, the occlu-
sion by object leads to erroneous surface generation (e.g.,
when the performer pulls the cart and walks behind the
object). In contrast, the geometry results in the bottom row
of Fig. 20b demonstrate that our object-aware adaptive
fusion can successfully model occluded scenarios and avoid
deteriorated fusion.

Expansion for Multi-Person Scenarios. Here we show our
capability for extending to multi-person capture. As demon-
strated in the last row of Fig. 6, with semantic segmentation
labels of different subjects of the whole scene and our mask
refinement process, we can also enable multi-person recon-
struction. Specifically, we reconstruct one person and the
interacted object firstly and then reconstruct another person
by treating the first one as an object. Note that to capture
such a larger scene with two persons, we deploy a two-cam-
era system using the online calibration from [10]. We believe
that it is an essential step for the reconstruction of more gen-
eral dynamic scenes.

5.4 Limitation

As a trial for robust monocular volumetric performance
capture under human-object interactions, we have demon-
strated compelling 4D reconstruction results. Nonetheless,
our approach is subject to some limitations.

Similar to the previous methods [10], [16], [17], [19], our
method cannot reconstruct the extremely fine details of the

performer, such as the fingers, the subtle expression, and
shaggy hair, due to the limited resolution and inherent noise
of the depth input. It is promising to adopt data-driven tech-
niques to further generate visually pleasant synthetic geome-
try details in those model-specific regions. Besides, the
reconstruction of loose and wide cloth such as a long skirt
with high-speedmotions remains challenging since it is diffi-
cult to track such large free-form non-rigid deformation
beyond human skeletal motions. It is also challenging for
human initialization in Section 4.2. A better human model
regression algorithm during model initialization or utilizing
a pre-scanned detailed template will help remove this limita-
tion. Furthermore, we cannot handle surface splitting topol-
ogy changes like clothes removal, which we plan to address
by incorporating the key-volume update technique [7]. As
common for learning methods, the utilized scene semantic
segmentation, human parsing, and pose estimation fail for
extreme scenarios not seen in training, such as severe and
extensive (self-)occlusions under extreme side-view observa-
tion. However, our mask refinement strategy turns to obtain
accurate masks, and data-driven cues of motion prediction
and pose prior help us to relieve the occlusion problem with
re-initialization ability. As for more general interactions, our
current system still cannot handle tiny objects which can be
played with fingers or non-rigid objects like dolls or papers,
which restricts the wide practical applications of our
approach. The limitation of tiny objects is also due to the lim-
ited image resolution and quality of the available commercial
RGBD sensors. We plan to combine those the task-specific
approach such as [32], [66] for fine-grained interaction
modeling and extend our method to non-rigid objects by
modifying our node-graph sampling and updating strategy.
Besides, we has tried to handle multi-person scenarios with
inter-person interactions at a certain level. It is a promising
and challenging direction to deal with more general inter-
person interactions such as dancing, wrestling, and hugging,
even using the samemonocular RGBD input.

Fig. 19. Evaluation of occlusion ratios. The images listed above are the
input image, and the red masks are the expanded mask of occlusion.
The images below are the reconstruction results.

Fig. 20. Evaluation of the object-aware adaptive fusion. (a) A sequence
with high-speed motions. (b) A sequence with occlusions. The first to the
third row are reference color images, the geometry results without
object-aware adaptive fusion, and the geometry results with object-
aware adaptive fusion.
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6 CONCLUSION

We have presented RobustFusion, a robust volumetric perfor-
mance reconstruction approach for complex human-object
interactions and challenging humanmotions using only a single
RGBD sensor. It combines various data-driven visual and inter-
action cues for robust human-object 4D reconstruction whilst
still maintaining light-weight computation and monocular
setup. Our scene decoupling scheme with segmentation refine-
ment and robust object tracking enables explicit human-object
disentanglement and temporal-consistent modeling, while our
human initialization gets rid of the tedious self-scanning con-
straint. Our robust human performance capture with various
visual and interaction cuesmodels complex interaction patterns
in adata-drivenmanner and enables naturalmotion reconstruc-
tion under challenging human-object occlusions, with unique
re-initialization ability. Our object-aware adaptive fusion
scheme successfully avoids deteriorated fusion and obtains
temporally coherent human-object reconstruction with the aid
of occlusion analysis and human parsing cue. Extensive experi-
mental results demonstrate the effectiveness and robustness of
our approach for compelling performance capture in various
challenging scenarios with human-object interactions. We
believe that it is a critical step to enable robust and lightweight
dynamic scene reconstruction under human-object interactions,
with many potential applications in VR/AR, entertainment,
humanbehavior analysis, and immersive telepresence.
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