

Human-Centric Capture and Digitalization for Immersive XR Experiences

Zhuo Su

Bytedance

Immersive XR is about bringing real humans into the virtual world

- It's not just about virtual environments it's also about human presence.
- Humans need to be captured and recreated digitally.
- Core Elements:
 - Motion: how people move
 - Appearance: how they look (3D shape + texture)
 - Animation: how they act

Talk Overview

Stage in Immersive XR	Motion	Appearance	Animation
1. Motion Capture	$\overline{\mathbf{V}}$	_	_
2. Reconstruction	_	\overline{V}	_
3. Performance Capture	$\overline{\mathbf{V}}$	\overline{V}	_
4. Avatar Creation	$\overline{\checkmark}$	\overline{v}	\overline{v}

1. MoCap in XR: Why It's Hard

XR Applications

Sparse IMU sensors & ego-centric cameras

- Sparse observations, underdetermined motion: most body parts unobserved
- Human motion is highly varied, XR games involve complex and challenging motion
- Real-time constraints limit use of post processing like IK or physical simulation
- Prone to physical artifacts: sliding, floating, ground penetration

1. MoCap in XR: A Series of Solutions

AvatarJLM HMD-Poser EMHI (MEPoser) EnvPoser

ICCV'23 CVPR'24 AAAI'25 CVPR'25

6DoF of HMD and hand controllers

+ scalable IMUs on legs or pelvis

+ egocentric cameras of HMD

+ 3D environment from VR device

Xiaozheng, Zheng, et al. "Realistic Full-Body Tracking from Sparse Observations via Joint-Level Modeling", ICCV 2023.

Peng, Dai, et al. "HMD-Poser: On-Device Real-time Human Motion Tracking from Scalable Sparse Observations", CVPR 2024.

Fan, Zhen, et al. "EMHI: A Multimodal Egocentric Human Motion Dataset with HMD and Body-Worn IMUs", AAAI 2025.

Songpengcheng, Xia, et al. "EnvPoser: Environment-aware Realistic Human Motion Estimation from Sparse Observations with Uncertainty Modeling", CVPR 2025.

1. Frameworks of XR Mocap

AvatarJLM

HMDPoser

MEPoser

EnvPoser

1. Scalability and Flexibility Are Essential for XR MoCap

1. Data is Equally Important for XR MoCap

Underdetermined Input → Ambiguous Motion

- Sparse sensors, partial observations
- Many possible poses fit the same input

Lower body is unobserved in typical XR setups.

Human Motion Has Structure

- Motion is not random it follows patterns
- Learning these patterns from <u>real data</u> helps resolve ambiguity

Patterns like "Learning Variational Motion Prior.

1. Data is Equally Important for XR MoCap

SOTA Models Are Not Enough Without the Right Data

- We achieve SOTA on public benchmarks; code & models open-sourced
- But real XR needs diverse, task-specific data

We Built the Right Data With real XR sensors

- Optical MoCap → highest precision with suits
- Multi-View Marker-less Mocap → diverse clothing

We open-sourced the EMHI dataset.

Motion alone isn't enough — we need 3D appearance too.

2. Human Reconstruction: 3D Representation

Explicit

Implicit

2. Shape Reconstruction

First to combine 2D diffusion and Fourier Occupancy Field for 3D generation.

Muxin, Zhang, et al. "Joint2Human: High-quality 3D Human Generation via Compact Spherical Embedding of 3D Joints", CVPR 2024.

2. Appearance Reconstruction

First to leverage <u>2D Video Generation</u> and <u>Large Reconstruction Model</u> for single-image human Gaussian Splatting reconstruction.

Panwang, Pan, et al. "HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors", NeuIPS 2024.

2. Human Reconstruction: Takeaways

- 2D priors enrich structural and texture details for better 3D reconstruction.
- Large reconstruction model enhance generalization across poses and appearances.
- Combining 2D and 3D modalities is crucial for quality and robustness.

This framework is also suited for avatar generation.

Static Reconstruction isn't enough — performance capture unifies motion and appearance over time.

3. Performance Capture: Early-Stage – Volumetric Capture

UnstructuredFusion

PAMI'19

RobustFusion series

ECCV'20 / PAMI'22

NeuralHOFusion

CVPR'22

Instant-NVR

CVPR'23

Volumetric Capture + Non-rigid Warping

+ Implicit Completion + Robust Tracking

+ Neural Blending-based Rendering

+ Instant-NGP-based NeRF Rendering

Lan, Xu, et al. "UnstructuredFusion: Realtime 4D Geometry and Texture Reconstruction using Commercial RGBD Cameras", PAMI 2019. Zhuo, Su, et al. "RobustFusion: Human Volumetric Capture with Data-driven Visual Cues using a RGBD Camera", ECCV 2020. Zhuo, Su, et al. "Robust Volumetric Performance Reconstruction under Human-object Interactions from Monocular RGBD Stream", PAMI 2022. Yuheng, Jiang, et al. "NeuralHOFusion: Neural Volumetric Rendering Under Human-object Interactions", CVPR 2022. Yuheng, Jiang, et al. "Instant-NVR: Instant Neural Volumetric Rendering for Human-object Interactions from Monocular RGBD Stream", CVPR 2023.

3. Performance Capture: Recent Advances – 4DGS

Bridging Gaussian Splatting and non-rigid tracking for compact volumetric video

Yuheng, Jiang, et al. "HiFi4G: High-Fidelity Human Performance Rendering via Compact Gaussian Splatting", CVPR 2024.

3. Performance Capture: Recent Advances – 4DGS

Unifying Playback and Re-Performance for Human-Centric Volumetric Video

Yuheng, Jiang, et al. "RePerformer: Immersive Human-centric Volumetric Videos from Playback to Photoreal Reperformance", CVPR 2025.

3. Performance Capture: Future work?

More General	→ Faster
Human-Only → Human-Centric → General Dynamic Scene	 Generalizable models with feed-forward inference Real-time capture for holographic telepresence
Fewer Sensors, Smarter Models	© Task-Oriented
 Egocentric or monocular input Learning-based priors for robust in-the-wild performance 	For downstream tasks such as: • High-quality volumetric video playback • Content generation and editing • Re-performer and motion transfer

Motion and appearance are in place — the last piece is animation. That's where Avatar Creation comes in.

4. Avatar Creation: Definition

Performance Capture

Replays recorded motion and appearance

Avatar Creation

Builds animatable digital humans from limited input.

How do we build **controllable**, **generalizable**, and **realistic** avatars that go **beyond replay**, and support **animation**, **interaction**, and **immersion**?

4. Avatar Creation: A Series of Solutions

HeadGap **SEGA PGHM OHTA** 3DV'25 arXiv'25 arXiv'25 CVPR'24

Few-shot head avatar creation

One-shot head avatar creation

Generalizable full-body avatar creation

One-shot hand avatar creation

Xiaozheng, Zheng, et al. "OHTA: One-shot Hand Avatar via Data-driven Implicit Priors", CVPR 2024. Xiaozheng, Zheng, et al. "HeadGAP: Few-shot 3D Head Avatar via Generalizable Gaussian Priors", 3DV 2025. Chen, Guo, et al. "SEGA: Drivable 3D Gaussian Head Avatar from a Single Image", arXiv 2025. Cheng, Peng, et al. "Parametric Gaussian Human Model: Generalizable Prior for Efficient and Realistic Human Avatar Modeling", arXiv 2025.

4. One/Few-shot Paradigm: Generalizable Prior Model

OHTA

SEGA

HeadGap-style methods aim to generalize across identities and create one with one/few-shot adaptation.

4. Challenges and Opportunities

⚠ Bottlenecks in One/Few-Shot Paradigm

- Training on expensive 3D data
- Limited Model Capacity and Scaling Bottlenecks:
 Quality plateaus as ID count increases
- Heavy Fine-tuning Required: Long per-identity adaptation process
- Poor Robustness & Generalization: Strong reliance on clean input; fails in complex scenes

Inspiration: Shift by Video Foundation Models

- Reframe Avatar Creation as a data-driven process leveraging large-scale, in-the-wild videos making casual capture possible and robust.
- Could we bypass explicit 3D reconstruction for direct novel-view and novel-pose generation?

4. Avatar Creation: Trend?

So, Where Is 3D Avatar Headed?

The answer is SCALING UP!!!

4. Avatar Creation: How to Scale Up

Component	Role in Scaling	Key Design Choice	
Model	Framework to generate avatar from image(s)	Pretrained encoder (e.g., ViT) + LRM	
Representation	Supports real-time inference compared with video generation	3D Representation (e.g., Gaussian Splatting)	
Data	Fuel for model to learn generalization ability	High-quality 3D data + large-scale 2D data	
Training	Fully use data of different quality for domain adaptation & scaling	Hybrid batches, pre-train + post-train	

Scaling is not just about model size — it's about the right structure, supervision, and strategy.

4. Zero-Shot Paradigm: Model and Representation Examples

A generative framework using pretrained encoders and reconstruction models to efficiently create high-quality 3D avatars from 2D images via staged training.

4. Data & Training

Training Strategy: Hybrid batches to eliminate domain gap, pre-train on large scale 2D data + post-train on high-quality 3D data.

Summary: Building Human-Centric Pipelines for XR

We've explored the key components:

- Accurate motion capture from sparse observations
- High-fidelity reconstruction of geometry and appearance
- Performance capture that preserves expressivity and nuance.
- Avatar creation that unifies motion, appearance, and animation for scalable deployment.

Together, these pipelines bring real humans into virtual worlds — capturing not just how we move, but how we look, and express. That's how we enable true presence.

Thank you!

