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Abstract—A high-quality 4D geometry and texture reconstruction for human activities usually requires multiview perceptions via highly

structured multi-camera setup, where both the specifically designed cameras and the tedious pre-calibration restrict the popularity of

professional multi-camera systems for daily applications. In this paper, we propose UnstructuredFusion, a practicable realtime

markerless human performance capture method using unstructured commercial RGBD cameras. Along with the flexible hardware

setup using simply three unstructured RGBD cameras without any careful pre-calibration, the challenge 4D reconstruction through

multiple asynchronous videos is solved by proposing three novel technique contributions, i.e., online multi-camera calibration, skeleton

warping based non-rigid tracking, and temporal blending based atlas texturing. The overall insights behind lie in the solid global

constraints of human body and human motion which are modeled by the skeleton and the skeleton warping, respectively. Extensive

experiments such as allocating three cameras flexibly in a handheld way demonstrate that the proposed UnstructuredFusion achieves

high-quality 4D geometry and texture reconstruction without tiresome pre-calibration, liberating the cumbersome hardware and

software restrictions in conventional structured multi-camera system, while eliminating the inherent occlusion issues of the single

camera setup.

Index Terms—4D reconstruction, performance capture, multi-camera, atlas texturing, skeleton warping, online calibration

Ç

1 INTRODUCTION

OVER the last decade, Virtual Reality (VR) and Aug-
mented Reality (AR) technologies have provided inno-

vative solutions to present information in a way that was
unthinkable just few years ago, extending its applications
from entertainment to commerce, from gaming to education,
and from military to art. In particular, the live 4D (3D spatial
plus 1D time) content generation or reconstruction evolves as
a cutting-edge yet bottleneck technique in VR/AR applica-
tions, restricted by the imperfect 3D sensing using existing
RGBD sensors as well as the imperfect reconstruction espe-
cially when handling challenging dynamic scenes such as
non-rigid humanmotions. How to reconstruct the 4Dmodels
of human activities for better VR/AR experience has recently
attracted substantive attention of both the computer vision
and computer graphics communities.

Within the category of using RGBD sensors for 4D
reconstruction, recent technological advances have led to
a profound progress in terms of both effectiveness and
efficiency, by leveraging the high-end GPUs. A number of
reconstruction techniques using the most handy single
depth camera setup [1], [2], [3], [4], [5] usually adopt a
temporal fusion pipeline to solve the incomplete observa-
tion challenges, yet the reconstruction still suffers from
the inherent self-occlusion issue due to lack of camera
view resource. Although the state-of-the-art DoubleFu-
sion [6] method takes advantage of human shape prior
and achieves robust dynamic reconstruction on casual
human body motions, it merely provides geometry recon-
struction results, and is still incapable of generating com-
pelling texture due to the limited input. To reconstruct
high quality 4D geometry and texture simultaneously,
one solution is to rely on collaborative multiple cameras
systems like Fusion4D [7] and Motion2Fusion. [8] How-
ever, such systems are expensive and difficult to be
deployed due to the requirement of non-commercial
depth cameras, which are developed using tens of RGB/
infra-red cameras integrated with structured lights. More
importantly, all of the cameras and lightings are required
to be synchronized and pre-calibrated in advance, leading
to the high restriction of its wide applications for daily
usage.

In this paper, we propose UnstructuredFusion, which
allows realtime, high-quality, complete reconstruction of 4D
textured models of human performance via only three com-
mercial RGBD cameras. The three depth cameras cover the
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overall human body in a relatively compensated yet flexible
way, i.e., they are allocated in an unstructured manner with-
out any pre-calibration or synchronization in advance. Com-
pared with, [7], [8] our deployment is much more easy to
setup with a low budget, yet such convenience presents the
following challenges on the algorithm side for high quality
4D geometry and texture reconstruction: 1) unsynchronized
data capture exists not only among RGBD cameras, but also
inside each camera (internal asynchronous RGB video and
depth video); 2) Since the camera array is sparse and unsyn-
chronized, traditional pre-calibration will be very tedious
and difficult. To refrain from it, the multi-camera system
requires an on-line registration of the unstructured depths
and videos based on the human performance.

As analyzed above, from the algorithm perspective, the
given three RGB video streams and the three depth streams
are fully unstructured, i.e., all the six streams are temporally
and spatially misaligned. To solve this challenge, our key
idea is to find a proper anchor for aligning the depth and
color streams. For depth alignment, we leverage the skeleton
and surface information of the human character, and propose
a coarse-to-fine alignment scheme by first utilization of skele-
ton information, followed with a non-rigid optimization for
warping the multiview depths. For the texture reconstruc-
tion, we propose to fuse a canonical texture atlas as an anchor
for guiding the blending and updating of the temporal
dynamic texture. The technique contributions of our Unstruc-
turedFusion system are summarized as follows.

� We propose an unstructured multiple RGBD camera
system using only three commercial RGBD cameras
for realtime human performance capture.

� We propose a skeleton warping based non-rigid
tracking scheme for unstructured multiview depth
alignment. This scheme can be used in both the
online calibration step and the tracking step.

� We propose a dynamic atlas texturing scheme for
warping and updating dynamic texture on the fused
geometry, leading to a high-quality appearance
reconstruction in realtime.

Given the aforementioned distinctiveness, Unstructured-
Fusion serves as a good compromising settlement between
over-demanding hardware setup and high-quality recon-
struction, promoting potential applications of 4D recon-
struction in immersive telepresence and supporting better
immersive/interactive experiences.

2 RELATED WORK

This section presents an overview of research works related
with the proposed UnstructuredFusion system. We first pro-
vide an overview from the system setting aspect of human
performance capture technologies, followed by an overview
of representative dynamic reconstruction algorithms, and a
brief summary of recent progress on reconstructing textured
dynamic targets. Note that here we constrain the scope to full
human bodymotion and geometry capture.

Performance Capture System For decades, marker based per-
formance capture [9] has been amature technique successfully
used in many fields such as the movie industry, sport science
and virtual reality. However, marker based performance

capture suffers from the requirements of a controlled capture
environment setup and marker suits with sensors like optical
markers, [10] inertial devices, [11] pressure sensors, [12] or
mounted cameras, [13] making them unable to capture
motions of people wearing everyday apparel. To mitigate the
above intrusive characteristics, markerless performance cap-
ture technologies have been recently investigated. Formarker-
less system, earlier setups required multi-view video camera
systems with controlled chromakey backgrounds [14], [15] to
reconstruct the temporal varying geometry of the human
body with a embedded skeletal model. Recent developments
using hundreds of cameras and a controlled high-quality
imaging environment [16], [17], [18] have even been able to
produce extremely high quality skeletal motion, surface
motion and even appearance reconstruction. Some recent sys-
tems [7], [8], [19] only utilize 8 static depth cameras to capture
challengingmotions in real-timewith the sacrifice of temporal
coherent results. However, most of these multi-view systems
require considerable setup time for camera calibration, image
segmentation or a pre-scanned 3D model of the actor with a
manually embedding skeleton. Some recent works only rely
on a light-weight single-view setup, [6], [20], [21], [22], [23],
[24], [25] which enrich more practical application of perfor-
mance capture. However, these single-stream systems
are fragile to self-occlusion due to the lack of capture view
resources.

Besides the above systems using static cameras, the
research on hand-held camera based performance capture
attacks the limitation of fixed capture volume. Hasler et al.
[26] introduced an approach for motion capture outdoor
frommultiple handheld RGB cameras. Ye et al. [27] presented
the approach using multiple handheld depth cameras to cap-
ture interacting motions, while Wu et al. [28] proposed using
binocular cameras to capture human motion and at the same
time derive the surface geometry detail of the actor. Xu et al.
[29] proposed to use multiple drones to capture the motion in
awide space.All thesemethods fit a 3D scan of the actor to sil-
houettes or depths estimated in each of the moving cameras,
which relies on a pre-scannedmodel or a pre-embeded skele-
ton and thus they have to be performed in an off-linemanner.
Recently, Wang et al. [30] presented how to reconstruct the
3D models of moving subjects using a new pairwise registra-
tion algorithm to register partial scans with little overlap.
However, they still needed 15% to 20% overlap of different
views, which can be difficult in the unstructured setting.

Comparably, the proposed UnstructuredFusion is the first
to perform real-time performance capture in the unstruc-
tured and sparsemulti-view setting, without the limitation of
severe self-occlusion and any pre-scanning or pre-calibration
efforts.

Dynamic Reconstruction Algorithm From the algorithm
aspect, markerless motion reconstruction can be mainly clas-
sified into two categories: discriminative approaches [31], [32]
and generative approaches. [33], [34] The former takes advan-
tage of data driven machine learning strategies to convert the
motion capture problem into a regression or pose classifica-
tion problem. In contrast, generative approaches often rely on
temporal information and solve a tracking problem. Many
of these approaches parameterize the high dimensional
human body by a low-dimensional skeleton embedded in the
body model template. The motion reconstruction process is
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then formulated as a frame-by-frame optimization to deform
the skeletal pose [15] or the surface geometry [14], [35] or both
of these together, [26], [27], [36] to be consistent with the
observed input. The generative strategy is the preferred
choicewhen accurate results are desired.However, they share
limitations such as the requirement of a pre-scanned model
template and a skeletal embedded and aligned initial pose,
and they struggle to recover from tracking errors. Some
research have tried to solve the above limitations. Non-rigid
surface registration methods [37], [38], [39] deform the model
vertices instead of the skeletal structure, which provides an
appealing solution for dynamic scene modeling since it does
not require the processing of skeleton embedding and surface
skinning. Guo et al. [35] proposed a L0 based motion regular-
izer to regularize the large parameter space of non-rigid
deformation, improving the performance capture robustness.

Only recently, free-form dynamic reconstruction meth-
ods with real-time performance have been proposed by
combining the volumetric fusion [40], [41] and the nonrigid
tracking techniques. DynamicFusion [1] utilized an approxi-
mate direct GPU solver to fuse the geometry information of
a non-rigid scene in real-time without the need for any pre-
processing. The following work [2] added the SIFT features
to improve the accuracy of motion reconstruction. Guo et al.
[3] proposed a realtime pipeline that utilized shading infor-
mation to improve non-rigid registration, meanwhile the
accurate temporal correspondences are used to estimate
surface appearance. Slavcheva et al. [5], [42] proposed more
constraints on the motion field to support topology changes,
while some research [4], [43] proposed to combine the skele-
ton motion or IMU sensors for more robust reconstruction.
Yu et al. [6] utilized the human shape prior and proposed a
double-layer node-graph to reconstruct human motion effi-
ciently. Fusion4D [7] and Motion2Fusion [8] extended the
non-rigid tracking pipeline to a static rig with 8 depth cam-
eras to capture dynamic scenes with challenging motions in
realtime. However, neither of these methods was suitable
for the unstructured multi-view setting, in which the mis-
alignment between views will cause accumulated tracking
error leading to uncanny reconstruction results.

Our reconstruction pipeline is the first to extend the real-
time non-rigid fusion pipeline to the unstructured and sparse
multi-view setting.We further demonstrate that, through our
proposed optimizationmethod tomodeling the unstructured
influence and the motion field together, the RGBD streams
can be accurately aligned in the global view, enabling robust
full body surface geometry andmotion reconstruction.

Textured Model Reconstruction A high quality texturing
scheme plays a critical role in realistic human performance
capture. Many existing works utilized or optimized per-
vertex or per-voxel color information for more realistic
reconstruction of both static [44] and dynamic scenes. [3], [7]
However, tying the color sampling to the geometry resolution
gives rise to blur colormesh output. It became clear that using
an atlas map would avoid this trade-off. The literature on
atlasmapping is vast. Generally, a surface has to be first either
cut through a seam (e.g, [45]) or segmented into charts (e.g,
[46]). While atlas mapping has been widely utilized to static
scene reconstruction, [47], [48], [49], [50] only limited work
[8], [51] supports atlas texturing for dynamic scene recon-
struction. What’s worse, their atlas mapping schemes work

in a frame-by-frame manner. Thus in their methods, for each
independent frame, the camera views have to be sufficient
enough to assure the color information covering any vertex,
which is impractical in the sparse multi-view or even single-
view setting.

In our UnstrutureFusion system, we propose the first
dynamic atlas mapping scheme for the sparse multi-view
and even single view setting. We further demonstrate that
through our atlas optimization scheme, a more realistic tex-
tured model with sharp and complete atlas can be obtained.

3 OVERVIEW OF UNSTRUCTUREDFUSION

The proposed UnstructuredFusion attempts to bring aspects
inherent in realtime human performance capture system to
unstructured and sparse multi-view setting as illustrated in
Fig. 1. In so doing we need to design a new pipeline which
is not only robust to the unstructured misalignment among
different views, but also makes full use of the multiview
depth and color information for realistic reconstruction,
whilst still maintaining real-time rates.

Fig. 2 illustrates the high-level components of our system
pipeline, which achieves considerablymore vivid results than
previous real-time performance capture systems under the
sparse multiview setting. Our system takes RGBD images as
input from sparse and unstructuredmultiple views, and gen-
erates texturedmeshes as output. Specifically, three Kinect v2
sensors are utilized to generate three uncalibrated and unsyn-
chronized RGBD streams with 512�424 resolution in 30 fps.
A temporal fusion strategy to accumulate the 3D reconstruc-
tion is adopted and Truncated Signed Distance Function
(TSDF) [40] volume is utilized as the underlying data struc-
ture. Similar to, [6], [43] both the embedded deformation (ED)
model [38] and the linear human body model (SMPL) [52]
are combined for non-rigid motion representation (see
Section 4.1). Furthermore, a brief introduction of each main
component of our pipeline is provided as follows.

Initialization. For the initialization in the first frame, to align
the uncalibrated RGBD streams and automatically embed the
SMPL human prior model simultaneously, we propose a
novel online multiview calibration scheme, which jointly
optimize the camera poses, initial pose and shape parameters
of SMPL model (see Section 4.2). Our online calibration
scheme is robust to align the multiple RGBD streams, even
considering the lack of sufficient overlap regions between
nearby views in the sparse multiview setting. It is worth not-
ing that during the online calibration, none of the external

Fig. 1. Illustration of the system setup and the real-time reconstruction
results of our UnstructuredFusion. The red circles indicate the unstruc-
tured sparse multi-view RGBD cameras.
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devices like checkerboard, IMU, etc., or process like pre-scan-
ning and manually rigging is needed. The performer only
need to start with a roughA-pose as the initialization.

Non-Rigid Tracking. The core of our pipeline is to solve the
non-rigid alignment parameters from the canonical frame to
the camera views of current RGBD inputs. We propose a
novel skeleton warping based non-rigid tracking scheme,
which utilizes the unique and solid human shape prior to sep-
arate the non-rigid tracking problem into two sub-problems,
and employs an iterative flip-flop strategy to optimize the fit-
skeletons and the hybrid motion-fields (See Section 4.3). Our
skeleton warping scheme is efficient and robust for modeling
the non-rigid motion and attacking the misalignment prob-
lem in the unstructured sparsemultiview setting.

Geometry Fusion. After estimating the non-rigid motions
and aligning the unstructured RGBD input streams, we fuse
the depth observations into a global canonical TSDF volume,
which is maintained to provide temporal coherent recon-
struction results. When updating the canonical volume, simi-
lar to previous works, [7], [8] we discard the data of the
voxels which are warped into invalid area in current inputs,
and also explicitly detect collided voxels to avoid errone-
ously fused geometry. The body shape and pose are also
optimized in the fused signed distance field using the effi-
cient volumetric shape-pose optimization in previous work
[6] to obtain better canonical body fitting and skeleton
embedding. Finally, marching cubes is used to extract a tri-
angle mesh.

Atlas Texturing. To provide more vivid performance cap-
ture results, we propose a novel atlas texturing scheme in the
sparse multiview setting. To stay within realtime computa-
tional budget, we construct a high-efficient projective atlas
map with virtual camera views bound to the canonical vol-
ume. The projective atlas is utilized to texture the recon-
structed mesh extracted from the canonical volume. A novel
grid warping based dynamic atlas blending scheme is pro-
vided to blend a complete and sharp atlas map (See Section
4.4). Our method provides the first realtime atlas texturing
solution for dynamic reconstruction in sparse multiview set-
ting, whichworks for single-view input aswell.

4 TECHNIQUE DETAILS OF UNSTRUCTUREDFUSION

On the contrary to the conventional structured multi-camera
systemwhich requires fixed allocation and careful calibration
of cameras offline, our UnstructuredFusion allows cameras to
be allocated in an unstructured and even hand-held manner.
In other words, we propose a novel online calibration scheme
to liberate the tedious overhead of camera array system, fol-
lowed by the skeletonwarping based non-rigid tracking algo-
rithm. Meanwhile, aiming for vivid human performance
capture, a temporal blending based online atlas texturing
scheme is proposed to generate a high-quality appearance. In
the following subsections, we first introduce the motion
representation in our method, followed by elaborating the
online calibration, non-rigid tracking, and online atlas textur-
ing, respectively.

4.1 Human Motion Representation

Since our method focuses on human performance capture,
we adopt the efficient and robust double-layer surface repre-
sentation for motion representation, [6] which combines the
embedded deformation model and the linear human body
model SMPL. In this subsection, we overview these two
motion parameterization schemes briefly and define the
mathematical notation in ourmethod.

Embedded DeformationModel. The EDmodel in our method
is represented by a non-rigid motion fieldG ¼ fdqj; xjg, con-
sisting of the dual quaternions fdqjg and the corresponding
sparse ED nodes fxjg. Let SE3ðdqjÞ denote the rigid transfor-
mation associated with the jth dual quaternion. Neighboring
ED nodes are connected together to form an ED graph and
then for any 3D vertex vc in the canonical volume, the ED
warping operation is formulated as follows:

~vc ¼ EDðvc;GÞ ¼ SE3
X

i2NðvcÞ
wðxi; vcÞdqi

0
@

1
Avc; (1)

where NðvcÞ represents a set of node neighbors of vc, and
wðxi; vcÞ ¼ expð�kvc � xik22=ð2r2kÞÞ is the influence weight of
the ith node xi to vc. The influence radius rk is set as 0.075m

Fig. 2. The system pipeline of UnstructuredFusion. We first initialize our system at the first frame by performing the online multi-camera calibration
(Section 4.2). Then for each frame, we sequentially perform the next 3 steps: skeleton warping based non-rigid tracking (Section 4.3), geometric
fusion and atlas texturing based on temporal blending (Section 4.4). Finally, live textured meshes with geometry details are obtained.
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for all the ED nodes. Similarly, ~nvc ¼ EDðnvc ;GÞ denotes the
warped normal of vc using the ED motion field G.

SMPL Inner Body Model. SMPL model [52] associates with
N ¼ 6890 vertices and a skeleton with K ¼ 24 joints. Before
posing, the body model �T deforms into the morphed model
T ðbb; uuÞ with the shape parameters bb and pose parameters uu
to accommodate for different identities and pose-dependent
deformations. Mathematically, the body shape T ðbb; uuÞ is
morphed according to:

T ðbb; uuÞ ¼ �TþBsðbbÞ þBpðuuÞ; (2)

where BsðbbÞ and BpðuuÞ represent the shape blendshapes and
pose blendshapes respectively. Let T ð�v;bb; uuÞ denotes the
morphed 3D position for any vertex �v 2 �T. The posed func-
tion of SMPL model is further formulated as WðT ðbb;
uuÞ; JðbbÞ; uu;WÞ, which is a general blend skinning function in
terms of the morphed body T ðbb; uuÞ, pose parameters uu, joint
locations JðbbÞ and the skinning weightsW. Then for any 3D
vertex vc, the Linear Blend Skinning (LBS) operation with the
SMPL skeletonmotions is formulated as follows:

v̂c ¼Gðvc; uuÞvc;Gðvc; uuÞ ¼
X
i2B

wi;vcGi;

Gi ¼
Y
k2Ki

expðuk�̂kÞ;
(3)

where Gðvc; uuÞ is the posed rigid transformation of vc, B is
index set of bones,Gi is the cascaded rigid transformation of
ith bone, Ki are the parent indices of ith bone in the back-
ward kinematic chain, expðuk�̂kÞ is the exponential map of
the twist associated with kth bone, and wi;vc is the skinning
weight associated with ith bone and point vc. For wi;vc set-
ting, if vc is on SMPL model, wi;vc is pre-defined inW. If vc is
on the fused surface,wi;vc is given by the weighted average of
the skinning weights of its knn-nodes. If vc is on the depth
input, we find its knn-nodes by warping the ED-nodes into
the camera view first.

4.2 Online Multi-Camera Calibration

Recall that under the unstructured multi-camera setting of
our system, all the RGBD cameras are uncalibrated and
unsynchronized. Our online calibration scheme is illustrated
in Fig. 3. For the first frame, the performer needs to start with
a rough A-pose as the initialization. Then we jointly optimize
the initial camera poses TT ¼ fTT ig; i ¼ 1; 2; 3, initial skeleton
pose uu0 and the shape parameters bb0 of SMPL model as fol-
lows:

EinitðTT;bb0; uu0Þ ¼ �vdataEvdata þ �sdataEsdata

þ �pdataEpdata þ �priorEprior:
(4)

Here the volumetric data term Evdata measures misalign-
ment error between the SMPL model and the reconstructed
mesh in the reference volume [6]:

Evdataðbb0; uu0Þ ¼
X
�v2�T

cðDðWðT ð�v;bb0; uu0Þ; Jðbb0Þ; uu0ÞÞ; (5)

where Dð�Þ takes a point in the canonical volume and
returns the bilinear interpolated TSDF, and cð�Þ is the robust
Geman-McClure penalty function.

The dense projective data term Epdata forces the warped
vertices on the SMPL model to move to the corresponding
depth point of the input depth data based on a point-
to-plane distance metric, which is formulated as:

EpdataðTT Þ ¼
X3
i¼1

X
ð�v;uiÞ2Ci

cðnT
�v ðTT iWðT ð�v;bb0; uu0ÞÞ � uiÞÞ;

(6)

where ð�v;uiÞ is a correspondence pair found via a projective
look-up method in the ith camera view; ui is a sampled point
on the depth map while �v is a vertex on the SMPL model.
Besides the dense alignment, we detect the global human
skeleton using the Kinect SDK. Let Jp;i denotes the p-th 3D
joint position of detected skeleton in the ith camera view
which indicates additional global constraints for fitting the
SMPL model to current depth maps, formulated as the fol-
lowing sparse feature term:

EsdataðTT Þ ¼
X

1�i < j�3

XNp

p¼1
tðp; i; jÞkTT�1i Jp;i � TT�1j Jp;jk22; (7)

where Np is the amount of 3D skeleton joints and tðp; i; jÞ is
the indicator function which equals to 1 only if the pth joint
is observable in both the ith and jth camera views.

Similar to, [6], [53] we utilize a pose prior to penalize the
unnatural poses, which is defined as

Epriorðuu0Þ ¼ �log
X
j

wjNðuu0;mj; djÞ
 !

: (8)

This term is formulated as a Gaussian Mixture Model
(GMM), where wj, mj and dj are the mixture weight, the
mean and the variance of jth Gaussian model, respectively.

The resulting energy in Eqn. (4) is solved in an Iterative
Closest Point (ICP) framework with a custom designed
highly efficient Preconditioned Conjugate Gradient (PCG)
solver onGPU. [3], [7] Similar to, [6] we ignore the pose blend
shape in Evdata (Eqn. (5)) to make the convergence faster. To
further pick a good initial value during the first ICP iteration,
we solve Eqn. (5) to find the initial guess of both the skeleton
pose uu0 and shape parameters bb0 following. [6] The initial
guess of camera poses TT is obtained by solving Eqn. (7). At
last, after the optimization we embed the body shape and
pose into the canonical frame, and initialize the motion field
and skeletonmotions.

Fig. 3. Illustration of the online calibration. (a,b,c) are the depth inputs
with the initial camera poses, the camera poses after solving Eqn. (7),
and the one after solving Eqn. (4). (d) The final output of online calibra-
tion. From left to right: the aligned color frames, the aligned depth frames
and the embedded SMPL model.
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4.3 Skeleton Warping Based Non-Rigid Tracking

It is worth noting that in our commodity unstructured setup,
due to the asynchronous nature of the consumer-oriented
hardware, the RGBD input streams suffer from error due to
lack of synchronization, let alone the extrinsic camera locali-
zation error and the distortion of raw depth maps. These
issues cause misalignment of raw RGBD inputs, which fur-
ther increases the difficulty of solving non-rigid tracking,
leading to uncanny reconstruction results. To attack these
misalignment problems when designing non-rigid tracking
strategy, we propose to align all the asynchronous rawRGBD
streams to a global ‘reference’ through the skeleton warping,
based on the insight that the unique prior of human shape
can serve as a quite reliable ‘reference’. In this way, both skel-
etal motions and non-rigid ED deformations are jointly inves-
tigated via jointly optimizing current SMPL skeleton pose uu

and the EDmotion fieldG in a frame-by-framemanner, given
that the ED node-graph is bound tightly to the SMPLmodel.

Mathematically, we introduce the “fit-skeleton” ûui, denot-
ing the SMPL skeleton pose fit to current live RGBD image
input Di in the ith camera view, which corresponds to sub-
frame level asynchronous capture time under the unstruc-
tured setting. Let uu denotes the optimized skeleton for current
frame without the influence of unstructure error. Then for
each pixel ui 2 Di, we can warp it from the fit-skeleton pose
ûui to the global pose uu, using the “skeleton warping” opera-
tion formulated as:

u0i ¼ Gðui; uuÞGðui; ûuiÞ�1ui; (9)

whereGð�Þ is the Linear Blend Skinning rigid transformation
of the SMPL skeleton. Note that the skinning weight of ui is
given by the weighted average of the skinning weights of its
knn-nodes. To align all the raw RGBD streams using skeleton
warping, we combine a dense data term and the pose prior
term [53] to optimize the fit-skeleton ûui, formulated as:

EskwarpðûuiÞ ¼ �fitEfitðûuiÞ þ �priorEpriorðûuiÞ: (10)

Here the definition of pose prior term Eprior resembles Eqn.
(8) in terms of ûui instead of uu0. The dense data term meas-
ures the skeleton fitting between the reconstructed double
layer surface and the depth map:

EfitðûuiÞ ¼
X

ðvc;uiÞ2Pi
t1ðvcÞcðn̂T

vc
ðGðvc; ûuiÞvc � uiÞÞ

þ t2ðvcÞcð~nT
vc
ðGðvc; ûuiÞGðvc; uuÞ�1~vc � uiÞÞ;

(11)

where Pi is the correspondence set of the ith camera view; ui

is a sampled point on the depth map and its closest point vc
can be on either the body shape or the fused surface. t1ð�Þ and
t2ð�Þ are correspondence indicator functions: t1ðvcÞ equals to
1 only if vc is on the body shape; t2ðvcÞ equals to 1 only if vc is
on the fused surface. We follow the same correspondences
searching scheme on the double layer surface as. [6] Please
refer to [6] for more detail.

After solving all the fit-skeletons ûui of current frame, we
further jointly optimize the global skeleton pose uu and cur-
rent ED non-rigid motion field G as follows:

EmotðG; uuÞ ¼ �dataEdata þ �bindEbind þ �regEreg

þ �priorEprior þ �skeleEskele:
(12)

Again, the pose prior term Eprior resembles Eqn. (8). Follow-
ing, [6] the binding term Ebind constrains both motions to be
consistent while the geometry regularity term Ereg produces
locally as-rigid-as-possible (ARAP) motions to prevent over-
fitting to depth inputs. These two terms are detailed in. [3], [6]

The dense projective data term Edata is formulated as the
sum of point-to-plane distances in our multi-view setting:

EdataðG; uuÞ ¼
X3
i¼1

X
ðvc;uiÞ2Pi

ð~nT
vc
ð~vc � u0iÞÞ2; (13)

where ui is a sampled point in the depth map, and vc
denotes its closest point on the fused surface. Pi is the set of
correspondences found via a projective local search [1], [29]
in the ith camera view. u0i denotes the aligned depth pixel
after skeleton warping using Eqn. (9). To further bridge the
fit-skeletons ûui and current global skeleton uu, we introduce
the following skeleton term:

EskeleðuuÞ ¼
X3
i¼1

X
ui2Pi

kWuiðuu � ûuiÞk22; (14)

where Wui is the LBS skinning weight vector of the depth
point ui. Note that we first warp the ED-nodes into the ith
camera view to find the knn-nodes of ui; thenWui is given by
theweighted average of the skinningweights of its knn-nodes.

We solve the optimization problem in Eqn. (12) under the
ICP framework. The non-linear least squares problem is
solved using Levenberg-Marquardt (LM) method. During
each iteration, twist representation is utilized for both the
bone and node transformations and the transformations are
approximated using one-order Taylor expansion around
the latest values. The resulting linear system is solved using
the same custom designed highly efficient Preconditioned
Conjugate Gradient solver on GPU. [3]

4.4 Temporal Blending Based Atlas Texturing

A high quality texturing plays a critical role in reconstructing
the vivid appearance for human motion capture. Prior work
[3], [7] adopt per-vertex colors in the final output, but simply
associating the color sampling with the geometry resolution
requires unfavorable trade-offs that produce blurred results.
Recent work [8], [17], [51] propose atlas texturing to liberate
the constraint of the geometry resolution, leading to sharper
results. However, these methods conduct atlas texturing
frame by frame independently, implying that the texture atlas
changes for each live frame. Thus the camera views have to be
sufficient enough to assure the color information covering
any vertex for any possiblemotions ofmodel in the live frame
(i.e., 8 and 106 camera views for previous work [8], [17]
respectively). In view of this, we propose a novel temporal
blending based atlas texturing scheme, allowing for generat-
ing a sharp and realistic textured model in the commodity
sparse multi-view set-up and even for single-view input.
More specifically, to staywithin real-time computational bud-
get, we choose to construct a high-efficient projective atlas
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map. To utilize the intra-frame information and blend a global
atlas, all the projective poses are bound to the global canonical
model. In particular, to capture more details in the head
region, we build two kinds of virtual projective poses in the
first frame: TTH;i and TTB;i for texturing the head and body
regions respectively, where i 2 1; 2; 3 denotes the index of vir-
tual projective views since three views can cover the static
canonicalmodel in the A-pose setting overall.

As shown in Fig. 4, for every input color frame, we first
project all the visible canonical vertices with TTH;i and TTB;i, fol-
lowed by writing the color at the projected position into the
corresponding texture coordinates to build the partial projec-
tive textures aai of the ith virtual view for head and body region
respectively. The generation of such partial texture can be eas-
ily achieved using the OpenGL rasterization pipeline. We
then temporally blend all the partial texture images faaig into a
complete and global atlas fAAig in a frame-by-frame manner,
as illustrated in Fig. 4b and 4c respectively. For texturing the
un-covered and occluded areas of canonical model, we also
fuse all the color frames into a global color volume C, similar
as the TSDF volume. Such hybrid texturing scheme can easily
be achieved in OpenGL pipeline. The faces in the canonical
modelwith valid projectiveUVcoordinates are texturedusing
fAAig, while those without valid UV coordinates extract per-
vertex color values directly from the color volumeC.

Dynamic Projected Texture Blending: In order to obtain a
sharp and complete atlas from the partial projective atlas,
we solve the texture blending in a frame-by-frame and per-
texel manner. Similar to TSDF fusion in the volume space,
we perform temporal atlas blending as follows. For each
texel p, aaiðpÞ and AAiðpÞ denote the corresponding color val-
ues from the partial and blended atlas in the ith virtual cam-
era view respectively; WiðpÞ denotes its accumulated
blending weight; wiðpÞ ¼ cosðuÞ is the view-dependent
weight of current frame, where u is the angle between the
projected normal into the camera view, and the view direc-
tion of the camera. Finally, the projected atlas is dynami-
cally blended with the weight truncation as follows:

AAiðpÞ  AAiðpÞWiðpÞ þ aaiðpÞwiðpÞ
WiðpÞ þ wiðpÞ ;

WiðpÞ  minðWiðpÞ þ wiðpÞ; wmaxÞ:
(15)

The above maximum blending weight wmax enables themov-
ing average texture blending scheme to support dynamic tex-
turing. It is set to be 4 for head, and 8 for body region to
obtainmore dynamic texture detail in the face region.

Examining the blurry effect in atlas texturing, the motion
blur caused by fast motion can be simply eliminated by dis-
carding bad color frames through selecting views using the
blurriness measure by Crete et al. [54] For the atlas blur
caused by the non-rigid misalignment between the live mesh
and the color images, a 2D as-similar-as-possible (ASAP)
grid-based warping scheme, denoted as grid-based warping,
is adopted between the partial atlas aaiðpÞ and the temporally
blended atlasAAiðpÞ during the atlas blending using Eqn. (15).
Let fpA; pag denote all the feature pairs between AAi and aai,
based on ORB descriptors and GMS matching method. [55]
Regular grid cells are then sampled inAAi and each cell is split
into two triangles. Similar as, [56], [57], [58] the 2D warping
fromAAi to aai is modeled as the positions of the deformed grid
vertices, denoted as V̂ . Mathematically, we optimize the 2D
deformation using the following energy function:

EðV̂ Þ ¼ EdðV̂ Þ þ aEsðV̂ Þ: (16)

The data term EdðV̂ Þ that sums the distances of all the fea-
ture pairs in atlas domain afterwarping V̂ is formulated as:

EdðV̂ Þ ¼
X
pA

kwpAV̂pA � pak22; (17)

where V̂pA are the warped grid vertices enclosed pA, and wpA

is the corresponding weight of bilinear interpolation.
The ASAP regular term EsðV̂ Þ is formulated as:

EsðV̂ Þ ¼
X
v̂

tðv̂Þkv̂� v̂1 � sR90ðv̂0 � v̂1Þk22; R90 ¼ 0 1
1 0

� �
;

(18)

where v; v0; v1 are the neighboring triangle vertices clockwise,
and s ¼ kv� v1k=kv0 � v1k is a known scalar of initial grid.
tðv̂Þ equals to 1 only if v̂ is on the valid area of the blended
atlas AAi. For more details of ASAP warping, please refer to.
[56], [57], [58] Before blending AAi and aai using Eqn. (15), we
warp AAi using bilinear interpolation with the grid deforma-
tion V̂ , which can be accomplished in the OpenGL rasteriza-
tion pipeline efficiently. The proposed texturing scheme is
evaluated in Fig. 5, which can produce sharper andmore real-
istic textured results, compared to the per-vertex scheme.

5 EXPERIMENTAL RESULTS

In this section, we first report the implementation details of
our UnstructuredFusion, followed by the evaluation of our
main technical contributions as well as the comparison with
previous state-of-the-art methods, both qualitatively and
quantitatively. The limitation and discussion regarding our
UnstructuredFusion are provided in the last subsection.

Fig. 4. Illustration of our projective atlas scheme. (a) The input RGBD
image examples. (b) The corresponding partial atlas faaig. (c) The global
blended atlas fAAig. (d) The textured mesh output in the live frame.
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Implementation Details UnstructuredFusion is imple-
mented on a singleNVIDIAGeForce GTX TITANXGPU and
a 3.2 GHz 4-core Xeon E3-1230 CPU with 16 GB of memory.
The input live RGBD streams are captured from three Kinect
v2 sensors in 30 fps with 512�424 resolution. The entire pipe-
line runs at 33 ms per frame, where skeleton warping based
motion tracking takes around 16 mswith 5 ICP iterations, the
TSDF fusion takes around 6 ms, the atlas texturing takes
around 8 ms, and 3 ms for all the remaining computations.
For online calibration, the parameters �vdata, �sdata, �pdata and
�prior are set as 1.0, 2.0, 1.0 and 0.01, respectively. For motion
tracking, we choose �fit ¼ 1:0, �data ¼ 1:0, �bind ¼ 1:0, �reg ¼
5:0 and �skele ¼ 10:0, respectively. Note that these parameters
are set empirically for the balance of the cost of each term. For
EDmodel, we use the 4 nearest node neighbors for EDwarp-
ing, and the 8 nearest node neighbors to construct the ED
graph following previous work [3], [7]. The TSDF voxel size
is set as 4mm in each dimension to preserve sufficient geome-
try detail of the target.

5.1 Evaluation

Several representative sequences reconstructed by Unstruc-
turedFusion are illustrated in Fig. 6, where both the challeng-
ing motions and high-quality textures are reconstructed. In
particular, we further evaluate our technique contributions,
i.e., the skeletonwarping based non-rigid tracking, the tempo-
ral blending based atlas texturing, as well as the online multi-
camera calibration in the following contents respectively.

SkeletonWarping Based Non-rigid Tracking. In Fig. 7, we take
three sequences as examples to present the effectiveness of
the proposed skeleton warping scheme during the non-rigid
tracking process qualitatively. Aswe expected,without skele-
ton warping, the fused model suffers from severe accumu-
lated errors especially for the contents highlighted with the
red circles, due to the misalignment between the unstruc-
tured RGBD streams from different camera views. On the
contrary, with the proposed skeleton warping, our approach
succeeds to align the unstructured sequences, leading to visu-
ally pleasant 4D geometry and texture reconstruction.

Camera Movement.We further evaluate the effectiveness of
our method using three sequences captured by hand-held
moving cameras as illustrated in Fig. 8. For these three
sequence, during capturing the cameras maintain the target

performer in the capture views by slightlymoving in roughly
fixed positions, moving forward in a roughly straight line
and circling around the target, respectively. Note that in
such hand-held setting, the movement of different cameras
aggravates the difficulty of the consistent registration of
unstructured cameras. Thus the reconstruction without skel-
eton warping fails quickly with uncanny geometry due to
accumulated misalignment error as highlighted in the
regions with the red circles in Fig. 8. In contrast, our method
with skeleton warping can handle the misalignment caused
by highly unstructured inputs of moving cameras with dif-
ferent kinds of motions, obtaining high quality reconstruc-
tion mesh.

Temporal Blending Based Atlas Texturing. Recall that in
Fig. 5, the representative sequences qualitatively illustrate
that the proposed atlas texturing method outperforms tradi-
tional per-vertex scheme in terms of producing sharper and
more realistic textured results. To further evaluate the effec-
tiveness of the particular grid-based warping procedure in
our atlas texturing method, we take one representative
sequence as an example to demonstrate the results of our
atlas texturing schemew/o the proposed grid-basedwarping
in Fig. 9b and 9c, respectively. The result produced by per-
vertex texturing scheme [3] is shown in Fig. 9d as well. The
blue map visualizes the color-coded residual generated by
comparing the textured result with the input color image. As
we expected, the proposed atlas texturing scheme outper-
forms the per-vertex scheme, inducingmuch less residue and
obtaining sharper textured results, while the particular grid-
based warping procedure further improves the sharpness of
the final textured result notably.

Furthermore, the corresponding quantitative error curves
of our atlas texturing scheme and the per-vertex scheme are
depicted in Fig. 9e. Note that the residuals are calculated as
the per-pixel euclidean distances of the RGB values between
the textured results and the color image inputs, where each
color channel is normalized to [0,1]. It can be shown that our
proposed atlas texturing scheme achieves around 0.33 aver-
age normalized error compared with 0.42 of the one without
grid-based warping and 0.54 of per-vertex scheme, which
illustrates the effectiveness of both our atlas blendingmethod
and the grid-based warping optimization. Note that the per-
vertex scheme is even the best at the beginning of the
sequence, because the blended atlas is still incomplete for the
proposed atlas texturing scheme. Moreover, to further illus-
trate the effectiveness of the proposed atlas texturing scheme,
we artificially demonstrate the result of atlas texturing using
a sequence from DoubleFusion [6] with only single-view
RGBD input, in Fig. 10, showing that our atlas texturing
method allows for generating sharp and realistic textured
results for both single-view input and commodity sparse
multi-view input.

Online Multi-Camera Calibration. To evaluate the proposed
online multi-camera calibration scheme, the state-of-the-art
global registration methods 4PCS [59] and Go-ICP [60] are
adopted for comparison. Go-ICP [60] combines a local ICP
method with a branch-and-bound search to find the global
minimum and 4PCS [59] performs global registration by con-
structing a congruent set of 4 points between range images.
Fig. 11a presents the original depth inputs from the unstruc-
tured three camera views, while Fig. 11b, 11c, 11d are the

Fig. 5. Our atlas texturing scheme (right) compared to per-vertex color
scheme (left). Per-vertex colors suffer from block artifacts while our
method provides sharper textures with more dynamic facial expression.
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registration results of 4PCS, [59] Go-ICP [60] and our online
multi-camera calibration scheme in different render views
for qualitative visualization, respectively. As highlighted by
the circles and boxes, 4PCS and Go-ICP fail to align the three

unstructured views and causeweird interlacement of the par-
tial meshes from different camera views, especially for the
head and limbs regions due to the small overlap between dif-
ferent camera views. In contrast our proposed method

Fig. 6. Several examples that demonstrate the quality and fidelity of the reconstructed 4D geometry and texture results of the proposed Unstructured-
Fusion system.

2516 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 10, OCTOBER 2020

Authorized licensed use limited to: Tsinghua University. Downloaded on September 08,2020 at 06:16:55 UTC from IEEE Xplore.  Restrictions apply. 



obtains considerably better registration results in Fig. 11d by
utilizing the solid human shape prior.

Camera Number. Recall that comparing to existing high-end
multi-view capture systems [8], [17] our system utilizes only 3
commercial RGBD cameras for overall coverage of the target.
Note that the reconstruction algorithm in our system can be
extended to more cameras, but current light-weight sparse
multi-view setup is more convenient for daily usage. In
Fig. 12, we further evaluate the influence of camera numbers
in our system. Our method achieve good fidelity reconstruc-
tions even using less cameras. However, in the cases with less
cameras, our method fails to track the challenge motions in

the regions like elbows and knees due to the lack of enough
valid constraints provided by the input depth streams. With
more camera resources, more accurate target motions can be
tracked, suffering from less accumulatedmisalignment errors.

5.2 Comparison

Apart from the evaluation of each technique contribution
separately in the previous subsection, we demonstrate the
overall performance of the proposed UnstructuredFusion
by comparing it against other state-of-the-art methods both
qualitatively and quantitatively in this subsection.

While the latestDoubleFusion [6] also utilizes SMPLmodel
to regularize the embedded deformation, it is a single-view

Fig. 7. Evaluation of skeleton warping. (a) Geometric and textured
results without skeleton warping. (b) The corresponding results with
skeleton warping.

Fig. 8. Evaluation of our method using moving cameras. (a, b, c) The
three example sequences in which the three cameras move in roughly
fixed positions, move forward in a roughly straight line and circle around
the captured target, respectively. From left to right: the captured scene;
the reconstruction results without skeleton-warping and our results.

Fig. 9. Evaluation of the atlas blending. (a) Input depth and color image.
(b) The reconstructed result of our atlas texturing with grid-based warp-
ing, where the blue map indicates the color-coded residual compared
with the input color image. (c) The reconstructed result of our atlas tex-
turing without grid-based warping. (d) The reconstructed result using
per-vertex scheme. (e) The corresponding quantitative error curves.

Fig. 10. Evaluation of atlas blending in terms of the number of input
views. (a) The textured and relighting results with atlas blending using
the single-view sequence from DoubleFusion.[6] (b) The results using
the three-views sequence captured by UnstructuredFusion.
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method. For fair comparison of real-time dynamic reconstruc-
tion under the unstructured and sparse multi-view setting,
we extend DoubleFusion [6] to the sparse multi-view setting,
by directly formulating the data term inDoubleFusion [6] into
multi-view depth inputs, denoted as Multi-DoubleFusion. In
this basic extension, we adopt the same online calibration
which is used in ourmethod to obtain the initial camera poses
and the embedded SMPL model. Note that similar as the
other state-of-the-art multi-view methods, [7], [8] in Multi-
DoubleFusion, we estimate the global rigid motion first using
the rigid-ICP algorithm for each frame, and then the non-rigid
parameters are estimated with fixed global rigid motion
parameters.

Fig. 13 shows the qualitative comparison of our Unstruc-
turedFusion against the other methods under consideration.
The geometry results of DoubleFusion [6] suffer from fast
self-occluded motions and challenging loop closure due to
the limited capture view resource and incomplete geometry.
While Multi-DoubleFusion tends to be more robust to the
occlusion, it still suffers from accumulated misalignment
errors between different views, leading to unnatural recon-
struction results especially in the head and limb regions as

highlighted in the red circle regions. In contrast, our method
is capable to handle the unstructured inputs and provide
loop-closed results with fine geometric details. Besides, our
method also performs dynamic and complete atlas textur-
ing, ensuring more realistic reconstruction.

For quantitative comparison, we render the reconstructed
geometry result into a 2D depthmap in the camera view, and
compute its MAE (Mean Absolute Error) by taking the depth
input as the reference only in the visible surface regions. Note
that even without ground truth reconstruction, this MAE
metric encodes the reconstruction error for both the rigid ICP

Fig. 11. Evaluation of online calibration. (a) The original depth inputs. (b,
c,d) The registration results of 4PCS,[59] Go-ICP[60] and our online
multi-camera calibration scheme, respectively. The red circles highlight
the misaligned regions, while the corresponding boxes further visualize
the misalignment in different render views. Note that different colors of
the boxes encode different body regions.

Fig. 12. Evaluation of the camera numbers. (a)-(c) are the reconstructed
geometry and texture results using a single camera, 2 and 3 cameras,
respectively.

Fig. 13. Qualitative comparison. (a)-(c) are the reconstructed geometry/
texture results of DoubleFusion,[6] Multi-DoubleFusion[6] and our
UnstructuredFusion, respectively.

Fig. 14. Quantitative comparison. (a)-(c) are the reconstructed geome-
try/texture results of DoubleFusion,[6] Multi-DoubleFusion[6] and our
UnstructuredFusion, respectively. The color-coded maps in bottom row
indicate the projective error maps.
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and nonrigid ICP processes of each method, providing a reli-
able quantitative comparison. As shown in Fig. 14, our
method achieves high quality reconstruction results with less
accumulated artifacts. The MAE for the entire sequence of
our method is around 17.47 mm, compared with 37.52 mm of
DoubleFusion [6] and 36.03 mm of Multi-DoubleFusion,
respectively. Moreover, the MAE of all the captured sequen-
ces in our experiments are listed in Table 1, where the errors
are computed in the visible surface regions only. It can be
shown that our method leads to considerably less error, i.e.,
22.34mmaverageMAE, comparedwith 44.48mmofDouble-
Fusion [6] and 39.04mmofMulti-DoubleFusion. These quan-
titative comparisons reveal the effectiveness of our method
for better non-rigid tracking during dynamic reconstruction
in the unstructured and sparsemulti-view setting.

To further evaluate ourmethod quantitatively, we particu-
larly compare our results with the marker based motion cap-
ture results using the OptiTrack system. Note that the capture
sequences from theOptiTrack system and our system are syn-
chronized by flashing the infrared LED. Similar to, [6], [43] the
two system are calibrated using manually pre-selected corre-
sponding pairs. After calibration, the detected marker posi-
tions from the OptiTrack coordinates system are transformed
into the camera coordinates system of the first frame. Then for
each concurrent frame, we further track the motions of these
markers using the reconstructed motion field and compare
the per-frame positions with the OptiTrack-detected ground-
truth. Fig. 15 presents the numerical curves of per-framemax-
imum error of DoubleFusion, [6] Multi-DoubleFusion and

our method on one sequence, in which the performer is cir-
cling periodically for challenge loop closure motions. Note
that the numerical error of DoubleFusion [6] gets worse peri-
odically especially in the side-view of the performer, due to
the limitation of DoubleFusion for tracking the non-rigid
motions of the self-occluded regions in the side-view. Multi-
DoubleFusion is more robust to the self-occlusion problem
and achieves smaller error than DoubleFusion, [6] and even
produces comparable results to our method until around
frame 250, since for these frames the target motion is till slow
and the accumulated error is still acceptable for reconstruc-
tion. However, Multi-DoubleFusion still suffers from the
accumulated error causedby themisalignment of the unstruc-
tured inputs. In contrast, ourmethod can handle themisalign-
ment of unstructured inputs without the self-occlusion
problem, and further achieves the smallest numerical error
against the ground truth provided by the OptiTrack system.
Besides, both the maximal and average errors of DoubleFu-
sion, [6] Multi-DoubleFusion and our method for the sequen-
ces captured via the OptiTrack system are listed in Table 2 for
better comparison. These numerical results illustrate that our
method achieve higher tracking accuracy in the challenging
unstructured and sparsemulti-view setting. Formore sequen-
tial results,we highly recommendviewing our accompanying
video formore comprehensive evaluation of our approach.

5.3 Limitation and Discussion

As the first trial to explore the problem of real-time dynamic
reconstruction for both geometry and texture in the unstruc-
tured sparse multi-view setting, the proposed Unstructur-
edFusion still owns limitations as follows.

From the reconstructed geometry aspect, due to the limited
resolution of the depth input, our method cannot reconstruct
the extremely fine details of the target especially in the face
region. Data-driven techniques can be adopted to further gen-
erate synthetic geometry details in those model-specific
regions. Besides, we cannot handle surface splitting topology
changes, whichwe plan to address in futurework by incorpo-
rating the key-volume update technique. [7] Our method is
also restricted to human reconstruction, without modelling
human-object interactions, which is critical for many practical
applications.We are going to combine static object reconstruc-
tionmethod [61], [62] into our current framework. In addition,
the reconstructed meshs suffer from the jittery effect in the
regionswithout valid depth input like feets and fits. A further
post-processing strategies in the 4D meshes like temporal fil-
tering would alleviate such jittery effect. For the atlas textur-
ing, our scheme relies on the fused color volume for those
occluded regions when projecting into the camera views,
which causes discrete colors near the boundary of the
occluded regions. We plan to combine the atlas processing

TABLE 1
Average Projective Numerical Errors of All the Captured

Sequences for the Concerned Methods: DoubleFusion, [6]
Multi-DoubleFusion [6] and Our UnstructuredFusion

DoubleFusion Multi-DoubleFusion UnstructuredFusion

Sports 51.01 mm 45.15 mm 21.13 mm
Yoga 54.68 mm 48.07 mm 27.71 mm
Captain
America

39.22 mm 30.47 mm 25.49 mm

Dancing 43.18 mm 40.54 mm 16.38 mm
Kicking 37.52 mm 36.03 mm 17.47 mm
Walking 34.13 mm 37.10 mm 20.96 mm
Spiderman 50.36 mm 43.27 mm 22.07 mm
Waving 45.83 mm 41.23 mm 23.74 mm
Crossing 44.38 mm 47.52 mm 26.09 mm

Fig. 15. Numerical error curves of our method, compared against Dou-
bleFusion[6] and Multi-DoubleFusion. Note that the groud truth is
obtained via the Vicon system.

TABLE 2
Average and Maximal Numerical Errors on the Entire Sequence
Compared to the Ground Truth Observation from the OptiTrack

System, for These Three Methods: DoubleFusion, [6]
Multi-DoubleFusion and Our Method, Respectively

DoubleFusion Multi-DoubleFusion Our Method

max error 0.2001 m 0.1195 m 0.0231 m
average error 0.0976 m 0.0368 m 0.0107 m
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method [63] in gradient domain as a post-processing step for
seamless blending. It would also be promising to utilize gen-
erative model and data-driven methods to fill a more com-
plete and sharp atlas. In addition, our texturing scheme is
based on projective atlas, which is efficient but not compact
enough. A texture atlas compression technique is needed to
stream all the textured meshes to enable more efficient appli-
cations. For the overall system setup, our system cannot work
outside due to the limitation of the available commercial
RGBD sensors. We plan to combine the binocular solution
with the available learning technique [64] to enhance the qual-
ity of the captured raw data. Another issue of our system is
that it relies on a rough A-pose initialization of the performer.
We are going to utilize the data driven technique to detect the
human shape and pose during initialization. Such human
shape detector can further be applied to our non-rigid track-
ing pipeline to prevent accumulated tracking error.

6 CONCLUSION

Motivated by alleviating the strict requirements (such as
highly structured multi-camera setup, tedious pre-calibra-
tion and synchronization procedure) when generating a
high-quality 4D geometry and texture for human activities,
we proposed to use unstructured commercial RGBD cam-
eras to realize a practicable realtime markerless human
performance capture system, denoted as UnstructuredFu-
sion. Under the flexible hardware setup using simply three
unstructured RGBD cameras, we mainly solved the chal-
lenge online multi-camera calibration, non-rigid tracking,
as well as atlas texturing problems based on multiple asyn-
chronous videos. The proposed solution stands on the
solid global constraints of human body and human motion
modeled by the skeleton and the skeleton warping, respec-
tively. We have conducted extensive experiments to evalu-
ate the effectiveness of UnstructuredFusion in high-quality
geometry and texture 4D reconstruction without tiresome
pre-calibration, even allocating three cameras flexibly in a
handheld way. Our UnstructuredFusion succeeds to liber-
ate the cumbersome hardware and software restrictions in
conventional structured multi-camera system, while elimi-
nating the inherent occlusion issues under the single cam-
era setup.
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